Research Article
BibTex RIS Cite

Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program

Year 2024, , 49 - 59, 29.10.2024
https://doi.org/10.54559/jauist.1552963

Abstract

Chemical spills pose a significant threat to the safety of people living nearby, as well as to air quality and occupational safety. Therefore, preventing chemical spills has become a key issue in environmental protection and process safety. This study aims to evaluate the effects of ethanol released from a tank at a chemical plant in Istanbul, Türkiye. The Areal Location of Hazardous Atmospheres model (ALOHA) version 5.4.7 estimates the storage tank's leakage radius and spread risk under three scenarios. ALOHA can assess the area affected by chemical hazards. The model shows that if the spill occurs 10 centimeters from the base of the tank, the toxic concentration of ethanol exceeds the Immediately Dangerous to Life or Health (IDLH) threshold (i.e., 3300 parts per million) at a distance of 31 meters from the place of release. In addition, when the ethanol concentration exceeds 60% of the Lower Explosive Limit (LEL) (i.e., 19800 parts per million), the flammable vapor cloud extends up to 31 meters from the place of release. For a Boiling Liquid Expanding Vapor Explosion (BLEVE), the mass of the fireball is assumed to be 100%, resulting in the worst possible scenario. During BLEVE, it is estimated that the fireball's diameter and time duration, determined by the amount of Ethanol present, would be 141 meters and 10 seconds, respectively. The results show that the thermal radiation effects caused by Ethanol BLEVE are extremely dangerous.

References

  • R. Pula, F. I. Khan, B. Veitch, P. R. Amyotte, A grid-based approach for fire and explosion consequence analysis, Process Safety and Environmental Protection 84 (2) (2006) 79–91.
  • Australian Government Dept. of Climate Change, Energy, the Environmental and Water, ETHANOL Fact Sheet (2022), https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/Ethanol-ethyl-alcohol, Accessed 4 Feb 2024.
  • N. Pandya, E. Marsden, P. Floquet, N. Gabas, Toxic release dispersion modelling with PHAST: parametric sensitivity analysis, in: CISAP - 3rd International Conference on Safety & Environment in Process Industry, Rome, 2008, pp. 179–186.
  • E. Y. Sanchez, S. Represa, D. Mellado, K. B. Balbi, A. D. Acquesta, J. E. Colman Lerner, A. A. Porta, Risk analysis of technological hazards: Simulation of scenarios and application of a local vulnerability index. Journal of Hazardous Material 352 (2018) 101–110.
  • A. Dasgotra, G. V. V. Varun Teja, A. Sharma, K. B. Mishra, CFD modelling of large-scale flammable cloud dispersion using FLACS, Journal of Loss Prevention in the Process Industries 56 (2018) 531–536.
  • J. M. Tseng, T. S. Su, C. Y. Kuo, Consequence evaluation of toxic chemical releases by ALOHA, Procedia Engineering 45 (2012) 384–389.
  • The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental Protection Agency (EPA), ALOHA fact sheet, (2020), https://response.restoration.noaa.gov/sites/default/files/aloha .pdf (Accessed 12 Feb 2024).
  • R. Jones, W. Lehr, D. Simecek-Beatty, M. Reynolds, Technical documentation ALOHA® (Areal Locations of Hazardous Atmospheres), 5. 4. 4., (2013), https://repository.library.noaa.gov/view/noaa/ 2669/ (Accessed 14 Feb 2024).
  • M. E. Özay, P. Guzel, E. Can, Consequence modelling and analysis of methane explosions: A preliminary study on biogas stations, Journal of Advanced Research in Natural and Applied Sciences 7 (1) (2021) 132–144.
  • M. H. Beheshti, S. F. Dehghan, R. Hayizadeh, S. M. Jafari, A. Koohpaei, Modelling the consequences of explosion, fire and gas leakage in domestic cylinders containing LPG, Annals of Medical Health Sciences Research 8 (2018) 83–88.
  • C. Yaws, Gas L. Lower and upper explosive limits for flammable gases and vapors (LEL/UEL), Matheson gas data book, 7th Edition, McGraw-Hill, Parsippany, New York, 2001.
  • A. M. Nassimi, M. Jafari, H. Farrokhpour, M. H. Keshavarz, Constants of explosive limits, Chemical Engineering Science 173 (2017) 384–389.
  • U. S. Environmental Protection Agency (EPA), Help Manual. User's ALOHA® (Areal Locations of Hazardous Atmospheres), 5.4.7. (2023), https://www.epa.gov/cameo/aloha-software (Accessed 10 Feb 2024).
  • Weather Online, Weather Estimation of İstanbul, (2023), https://www.havaturkiye.com/Turkiye/Esenyurt .htm (Accessed 10 Feb 2024).
  • P. Patel, N. Sohani, Hazard evaluation using ALOHA tool in storage area of an oil refinery, International Journal of Research in Engineering and Technology 4 (12) (2015) 203–209.
  • F. Fatemi, A. Ardalan, B. Aguirre, N. Mansouri, I. Mohammadfam, Areal location of hazardous atmospheres simulation on toxic chemical release: A scenario-based case study from Ray, Iran, Electronic Physician 9 (10) (2017) 5638–5645.
  • N. S. Anjana, A. Amartnath, M. V. H. Nair, Toxic hazards of ammonia release and population vulnerability assessment using geographical information system, Journal of Environmental Management 210 (2018) 201–209.
  • M. Anandhan, T. Prabaharan, M. Muhaidheen, S. Ragavendran, Quantitative risk assessment in LPG storage area for different fire scenarios, International Journal of Mechanical Engineering and Technology 10 (2) (2019) 1425–1435.
  • Y. A. Siddiki, T. Ahmed, Simulation and risk analysis of the accidental release of toxic gas from an industrial complex, International Conference on Mechanical, Industrial and Energy Engineering 20 (2020) 131–136.
  • M. E. Özay, H. Koten, E. Can, Transition vulnerability in the strait of Istanbul: Possible tanker explosion simulation., International Journal of Pure and Applied Sciences, 7 (3) (2021) 509–516.
  • S. Barjoee, M. Nikbakht, E. Malverdi, S. Zarei Mahmoud Abadi, M.R. Naghdi, Modeling the consequences of benzene leakage from tank using ALOHA in tar refining industrial of Kerman, Iran, Pollution 7 (1) (2021) 217–230.
  • S. Watts, What firefighters need to know about BLEVEs, FireRescue1, (2018), https://www.firerescue1.com/firefighter-training/articles/what-firefighters-need-to-know-about-bleves-EwLDAJRkauiIfaDR/ (Accessed 14 Feb 2024).
Year 2024, , 49 - 59, 29.10.2024
https://doi.org/10.54559/jauist.1552963

Abstract

References

  • R. Pula, F. I. Khan, B. Veitch, P. R. Amyotte, A grid-based approach for fire and explosion consequence analysis, Process Safety and Environmental Protection 84 (2) (2006) 79–91.
  • Australian Government Dept. of Climate Change, Energy, the Environmental and Water, ETHANOL Fact Sheet (2022), https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/Ethanol-ethyl-alcohol, Accessed 4 Feb 2024.
  • N. Pandya, E. Marsden, P. Floquet, N. Gabas, Toxic release dispersion modelling with PHAST: parametric sensitivity analysis, in: CISAP - 3rd International Conference on Safety & Environment in Process Industry, Rome, 2008, pp. 179–186.
  • E. Y. Sanchez, S. Represa, D. Mellado, K. B. Balbi, A. D. Acquesta, J. E. Colman Lerner, A. A. Porta, Risk analysis of technological hazards: Simulation of scenarios and application of a local vulnerability index. Journal of Hazardous Material 352 (2018) 101–110.
  • A. Dasgotra, G. V. V. Varun Teja, A. Sharma, K. B. Mishra, CFD modelling of large-scale flammable cloud dispersion using FLACS, Journal of Loss Prevention in the Process Industries 56 (2018) 531–536.
  • J. M. Tseng, T. S. Su, C. Y. Kuo, Consequence evaluation of toxic chemical releases by ALOHA, Procedia Engineering 45 (2012) 384–389.
  • The National Oceanic and Atmospheric Administration (NOAA) and the U.S. Environmental Protection Agency (EPA), ALOHA fact sheet, (2020), https://response.restoration.noaa.gov/sites/default/files/aloha .pdf (Accessed 12 Feb 2024).
  • R. Jones, W. Lehr, D. Simecek-Beatty, M. Reynolds, Technical documentation ALOHA® (Areal Locations of Hazardous Atmospheres), 5. 4. 4., (2013), https://repository.library.noaa.gov/view/noaa/ 2669/ (Accessed 14 Feb 2024).
  • M. E. Özay, P. Guzel, E. Can, Consequence modelling and analysis of methane explosions: A preliminary study on biogas stations, Journal of Advanced Research in Natural and Applied Sciences 7 (1) (2021) 132–144.
  • M. H. Beheshti, S. F. Dehghan, R. Hayizadeh, S. M. Jafari, A. Koohpaei, Modelling the consequences of explosion, fire and gas leakage in domestic cylinders containing LPG, Annals of Medical Health Sciences Research 8 (2018) 83–88.
  • C. Yaws, Gas L. Lower and upper explosive limits for flammable gases and vapors (LEL/UEL), Matheson gas data book, 7th Edition, McGraw-Hill, Parsippany, New York, 2001.
  • A. M. Nassimi, M. Jafari, H. Farrokhpour, M. H. Keshavarz, Constants of explosive limits, Chemical Engineering Science 173 (2017) 384–389.
  • U. S. Environmental Protection Agency (EPA), Help Manual. User's ALOHA® (Areal Locations of Hazardous Atmospheres), 5.4.7. (2023), https://www.epa.gov/cameo/aloha-software (Accessed 10 Feb 2024).
  • Weather Online, Weather Estimation of İstanbul, (2023), https://www.havaturkiye.com/Turkiye/Esenyurt .htm (Accessed 10 Feb 2024).
  • P. Patel, N. Sohani, Hazard evaluation using ALOHA tool in storage area of an oil refinery, International Journal of Research in Engineering and Technology 4 (12) (2015) 203–209.
  • F. Fatemi, A. Ardalan, B. Aguirre, N. Mansouri, I. Mohammadfam, Areal location of hazardous atmospheres simulation on toxic chemical release: A scenario-based case study from Ray, Iran, Electronic Physician 9 (10) (2017) 5638–5645.
  • N. S. Anjana, A. Amartnath, M. V. H. Nair, Toxic hazards of ammonia release and population vulnerability assessment using geographical information system, Journal of Environmental Management 210 (2018) 201–209.
  • M. Anandhan, T. Prabaharan, M. Muhaidheen, S. Ragavendran, Quantitative risk assessment in LPG storage area for different fire scenarios, International Journal of Mechanical Engineering and Technology 10 (2) (2019) 1425–1435.
  • Y. A. Siddiki, T. Ahmed, Simulation and risk analysis of the accidental release of toxic gas from an industrial complex, International Conference on Mechanical, Industrial and Energy Engineering 20 (2020) 131–136.
  • M. E. Özay, H. Koten, E. Can, Transition vulnerability in the strait of Istanbul: Possible tanker explosion simulation., International Journal of Pure and Applied Sciences, 7 (3) (2021) 509–516.
  • S. Barjoee, M. Nikbakht, E. Malverdi, S. Zarei Mahmoud Abadi, M.R. Naghdi, Modeling the consequences of benzene leakage from tank using ALOHA in tar refining industrial of Kerman, Iran, Pollution 7 (1) (2021) 217–230.
  • S. Watts, What firefighters need to know about BLEVEs, FireRescue1, (2018), https://www.firerescue1.com/firefighter-training/articles/what-firefighters-need-to-know-about-bleves-EwLDAJRkauiIfaDR/ (Accessed 14 Feb 2024).
There are 22 citations in total.

Details

Primary Language English
Subjects Fire Safety Engineering, Petrochemistry
Journal Section Research Articles
Authors

Sinan Doğan 0009-0001-9096-1985

Müge Ensari Özay 0000-0002-4785-5503

Publication Date October 29, 2024
Submission Date September 19, 2024
Acceptance Date October 20, 2024
Published in Issue Year 2024

Cite

APA Doğan, S., & Ensari Özay, M. (2024). Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program. Journal of Amasya University the Institute of Sciences and Technology, 5(1), 49-59. https://doi.org/10.54559/jauist.1552963
AMA Doğan S, Ensari Özay M. Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program. J. Amasya Univ. Inst. Sci. Technol. October 2024;5(1):49-59. doi:10.54559/jauist.1552963
Chicago Doğan, Sinan, and Müge Ensari Özay. “Consequence Modeling and Analysis of Ethanol Leakage from Storage Tank Using the ALOHA Program”. Journal of Amasya University the Institute of Sciences and Technology 5, no. 1 (October 2024): 49-59. https://doi.org/10.54559/jauist.1552963.
EndNote Doğan S, Ensari Özay M (October 1, 2024) Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program. Journal of Amasya University the Institute of Sciences and Technology 5 1 49–59.
IEEE S. Doğan and M. Ensari Özay, “Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program”, J. Amasya Univ. Inst. Sci. Technol., vol. 5, no. 1, pp. 49–59, 2024, doi: 10.54559/jauist.1552963.
ISNAD Doğan, Sinan - Ensari Özay, Müge. “Consequence Modeling and Analysis of Ethanol Leakage from Storage Tank Using the ALOHA Program”. Journal of Amasya University the Institute of Sciences and Technology 5/1 (October 2024), 49-59. https://doi.org/10.54559/jauist.1552963.
JAMA Doğan S, Ensari Özay M. Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program. J. Amasya Univ. Inst. Sci. Technol. 2024;5:49–59.
MLA Doğan, Sinan and Müge Ensari Özay. “Consequence Modeling and Analysis of Ethanol Leakage from Storage Tank Using the ALOHA Program”. Journal of Amasya University the Institute of Sciences and Technology, vol. 5, no. 1, 2024, pp. 49-59, doi:10.54559/jauist.1552963.
Vancouver Doğan S, Ensari Özay M. Consequence modeling and analysis of ethanol leakage from storage tank using the ALOHA program. J. Amasya Univ. Inst. Sci. Technol. 2024;5(1):49-5.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).