Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2021, Volume 2, Issue 1, 31 - 37, 30.06.2021

Abstract

References

  • 1. Dong S., Tian H., Huang L., Zhang J., Yan D., Geng Y., & Wang F. (2011). Non-Peripheral Tetrahexyl-Substituted Vanadyl Phthalocyanines with Intermolecular Cofacial π-π Stacking for Solution-Processed Organic Field-Effect Transistors. Advanced Materials, 23(25): 2850–2854.
  • 2. Chaure N. B., Cammidge A. N., Chambrier I., Cook M. J., Ray A. K. (2015). A Tetrabenzotriazaporphyrin Based Organic Thin Film Transistor: Comparison with a Device of the Phthalocyanine Analogue. ECS Journal of Solid-State Science and Technology, 4(4): P3086–P3090.
  • 3. Sirringhaus H. (2005). Device physics of solution‐processed organic field‐effect transistors. Advanced Materials, 17(20), 2411-2425.
  • 4. Lever ABP., Leznoff CC. (1996). Phthalocyanine: properties and applications. Advanced Materials, Vol. 4 p.536.
  • 5. Bottari G., Torre G. de la, Guldi, D.M., Torres T. (2010). Covalent and noncovalent phthalocyanine− carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chemical Reviews, 110, 6768–6816.
  • 6. Canımkurbey B., Taşkan M. C., Demir S., Duygulu, E., Atilla D., Yuksel F. (2020). Synthesis, and Investigation of Electrical Properties of Novel Liquid-Crystal Phthalocyanines bearing triple branched alkylthia chains. New Journal of Chemistry, 44, 7424-7435.
  • 7. Warner M., Din S., Tupitsyn I.S., Morley G.W., Stoneham A.M., Bahçıvan J.A., Wu Z., Fisher A.J., Heutz S., Kay CW., Aeppli G. (2013). Potential for spin-based information processing in a thin-film molecular semiconductor. Nature, 503, 504-508.
  • 8. Forrest S.R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428,9.
  • 9. Scheinert S,. Paasch G,. Hörselmann I., Herasimovich A. (2010). Low-cost submicrometer organic fieled effect transistors. Advances in Polymer Science, 223,155.
  • 10. Gürol İ., Ahsen V., and Bekaroǧlu Ö. (1994). Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with Ag I and Pd II. J. Chem. Soc., Dalt. Trans., 0, 497–500.
  • 11. Canlica M., Nyokong T. (2011). Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron, 30, 1975–1981.
  • 12. Tunç G., Güzel E., Şişman İ., Ahsen V., Cardenas-J. G. (2019). Effect of new asymmetrical Zn(ii) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New J. Chem., 43, 14390–14401.
  • 13. Tunç G., Albakour M., Ahsen V., Gürek AG. (2019). Peripherally carboxylic acid substituted asymmetric zinc(II) phthalocyanines: Synthesis and photophysicochemical properties. J. Porphyrins and Phthalocyanines, 23, 1355-1364.
  • 14. L. Sun. (2015). Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology, 26, 30.

APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS

Year 2021, Volume 2, Issue 1, 31 - 37, 30.06.2021

Abstract

Bağlayıcı grup olarak ftalosiyanin halkasına karboksilik asit fonksiyonlandırlmış asimetrik çinko ftalosiyanin (GT4) molekülü daha önce belirtilen prosedürlerimize uygun olarak hazırlnamıştır. Molekül yapısı spektroskopik yöntemler (FT-IR, MALDI-MS, UV-VIS) ile aydınlatılmıştır. Bu çalışmada peripheral pozisyonda heksiltiya ve karboksilik asit grupu içeren ftalosiyanin molekülü sentezlenmiş ve bu grupların OFET performansı üzerine etkileri araştırılmıştır.

References

  • 1. Dong S., Tian H., Huang L., Zhang J., Yan D., Geng Y., & Wang F. (2011). Non-Peripheral Tetrahexyl-Substituted Vanadyl Phthalocyanines with Intermolecular Cofacial π-π Stacking for Solution-Processed Organic Field-Effect Transistors. Advanced Materials, 23(25): 2850–2854.
  • 2. Chaure N. B., Cammidge A. N., Chambrier I., Cook M. J., Ray A. K. (2015). A Tetrabenzotriazaporphyrin Based Organic Thin Film Transistor: Comparison with a Device of the Phthalocyanine Analogue. ECS Journal of Solid-State Science and Technology, 4(4): P3086–P3090.
  • 3. Sirringhaus H. (2005). Device physics of solution‐processed organic field‐effect transistors. Advanced Materials, 17(20), 2411-2425.
  • 4. Lever ABP., Leznoff CC. (1996). Phthalocyanine: properties and applications. Advanced Materials, Vol. 4 p.536.
  • 5. Bottari G., Torre G. de la, Guldi, D.M., Torres T. (2010). Covalent and noncovalent phthalocyanine− carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chemical Reviews, 110, 6768–6816.
  • 6. Canımkurbey B., Taşkan M. C., Demir S., Duygulu, E., Atilla D., Yuksel F. (2020). Synthesis, and Investigation of Electrical Properties of Novel Liquid-Crystal Phthalocyanines bearing triple branched alkylthia chains. New Journal of Chemistry, 44, 7424-7435.
  • 7. Warner M., Din S., Tupitsyn I.S., Morley G.W., Stoneham A.M., Bahçıvan J.A., Wu Z., Fisher A.J., Heutz S., Kay CW., Aeppli G. (2013). Potential for spin-based information processing in a thin-film molecular semiconductor. Nature, 503, 504-508.
  • 8. Forrest S.R. (2004). The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428,9.
  • 9. Scheinert S,. Paasch G,. Hörselmann I., Herasimovich A. (2010). Low-cost submicrometer organic fieled effect transistors. Advances in Polymer Science, 223,155.
  • 10. Gürol İ., Ahsen V., and Bekaroǧlu Ö. (1994). Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with Ag I and Pd II. J. Chem. Soc., Dalt. Trans., 0, 497–500.
  • 11. Canlica M., Nyokong T. (2011). Synthesis and photophysical properties of metal free, titanium, magnesium and zinc phthalocyanines substituted with a single carboxyl and hexylthio groups. Polyhedron, 30, 1975–1981.
  • 12. Tunç G., Güzel E., Şişman İ., Ahsen V., Cardenas-J. G. (2019). Effect of new asymmetrical Zn(ii) phthalocyanines on the photovoltaic performance of a dye-sensitized solar cell. New J. Chem., 43, 14390–14401.
  • 13. Tunç G., Albakour M., Ahsen V., Gürek AG. (2019). Peripherally carboxylic acid substituted asymmetric zinc(II) phthalocyanines: Synthesis and photophysicochemical properties. J. Porphyrins and Phthalocyanines, 23, 1355-1364.
  • 14. L. Sun. (2015). Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters. Nanotechnology, 26, 30.

Details

Primary Language English
Subjects Engineering
Journal Section Sayı 1
Authors

Gülenay TUNÇ (Primary Author)
GEBZE TEKNİK ÜNİVERSİTESİ
0000-0001-6972-0979
Türkiye


Betül CANIMKURBEY
AMASYA ÜNİVERSİTESİ
Türkiye


Ayşe GÜL GUREK
GEBZE TEKNİK ÜNİVERSİTESİ
Türkiye

Supporting Institution The Scientific and Technological Research Council of Turkey (TUBITAK)
Project Number 114M488
Thanks The Scientific and Technological Research Council of Turkey (TUBITAK) is gratefully acknowledged for funding through the project 114M488 coupled to the COST Action MP1307.
Publication Date June 30, 2021
Published in Issue Year 2021, Volume 2, Issue 1

Cite

Bibtex @research article { jauist872013, journal = {Journal of Amasya University the Institute of Sciences and Technology}, issn = {2717-8900}, address = {Amasya University}, publisher = {Amasya University}, year = {2021}, volume = {2}, pages = {31 - 37}, doi = {}, title = {APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS}, key = {cite}, author = {Tunç, Gülenay and Canımkurbey, Betül and Gül Gurek, Ayşe} }
APA Tunç, G. , Canımkurbey, B. & Gül Gurek, A. (2021). APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS . Journal of Amasya University the Institute of Sciences and Technology , 2 (1) , 31-37 . Retrieved from https://dergipark.org.tr/en/pub/jauist/issue/63363/872013
MLA Tunç, G. , Canımkurbey, B. , Gül Gurek, A. "APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS" . Journal of Amasya University the Institute of Sciences and Technology 2 (2021 ): 31-37 <https://dergipark.org.tr/en/pub/jauist/issue/63363/872013>
Chicago Tunç, G. , Canımkurbey, B. , Gül Gurek, A. "APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS". Journal of Amasya University the Institute of Sciences and Technology 2 (2021 ): 31-37
RIS TY - JOUR T1 - APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS AU - Gülenay Tunç , Betül Canımkurbey , Ayşe Gül Gurek Y1 - 2021 PY - 2021 N1 - DO - T2 - Journal of Amasya University the Institute of Sciences and Technology JF - Journal JO - JOR SP - 31 EP - 37 VL - 2 IS - 1 SN - 2717-8900- M3 - UR - Y2 - 2021 ER -
EndNote %0 Journal of Amasya University the Institute of Sciences and Technology APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS %A Gülenay Tunç , Betül Canımkurbey , Ayşe Gül Gurek %T APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS %D 2021 %J Journal of Amasya University the Institute of Sciences and Technology %P 2717-8900- %V 2 %N 1 %R %U
ISNAD Tunç, Gülenay , Canımkurbey, Betül , Gül Gurek, Ayşe . "APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS". Journal of Amasya University the Institute of Sciences and Technology 2 / 1 (June 2021): 31-37 .
AMA Tunç G. , Canımkurbey B. , Gül Gurek A. APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. Journal of Amasya University the Institute of Sciences and Technology. 2021; 2(1): 31-37.
Vancouver Tunç G. , Canımkurbey B. , Gül Gurek A. APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS. Journal of Amasya University the Institute of Sciences and Technology. 2021; 2(1): 31-37.
IEEE G. Tunç , B. Canımkurbey and A. Gül Gurek , "APPLICATION OF ASYMMETRICAL ZINC PHTHALOCYANINES: ORGANIC FIELD EFFECT TRANSISTORS", Journal of Amasya University the Institute of Sciences and Technology, vol. 2, no. 1, pp. 31-37, Jun. 2021