Research Article
BibTex RIS Cite

Investigation of the Effect of Differential Morphing on Forward Flight by Using PID Algorithm in Quadrotors

Year 2020, Volume: 4 Issue: 1, 15 - 21, 24.06.2020
https://doi.org/10.30518/jav.685256

Abstract

In this study, modeling, control and differential morphing of a four-rotor unmanned aerial vehicle known as a quadrotor is discussed. With differential morphing, the forward flight performance and model of an autonomous quadrotor is presented. Due to the complex structure of the quadrotor, it is difficult to build the model. To get model parameters, a complete quadrotor model is drawn in the Solidworks program. In addition, Newton-Euler equations are used in the mathematical model. Simulation is done in Matlab / Simulink environment by using the parameters obtained from the model and the state-space model approach. PID (proportional, integral, derivative) is used as the quadrotor control algorithm. As a result of the study, the quadrotor forward flight is carried out using PID algorithm and differential morphing. The system characteristics of the situations with and without differential morphing are compared and the results are presented with graphs.

References

  • OKTAY, T., et al., PID based hierarchical autonomous system performance maximization of a hybrid unmanned aerial vehicle (HUAV). Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik, 2017. 18(3): p. 554-562.
  • Oktay, T., et al., Increasing performance of autopilot guided small unmanned helicopter. Int. J. Mech., Aerosp., Ind., Mechatronic Manuf. Eng., 2016. 10(1): p. 133-139.
  • Hintz, C., C. Torno, and L.R.G. Carrillo. Design and dynamic modeling of a rotary wing aircraft with morphing capabilities. in 2014 International Conference on Unmanned Aircraft Systems (ICUAS). 2014. IEEE.
  • Desbiez, A., et al. X-Morf: a crash-separable quadrotor that morfs its X-geometry in flight. in 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). 2017. IEEE.
  • Avant, T., et al. Dynamics, Hover Configurations, and Rotor Failure Restabilization of a Morphing Quadrotor. in 2018 Annual American Control Conference (ACC). 2018. IEEE.
  • Falanga, D., et al. Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision. in 2017 IEEE international conference on robotics and automation (ICRA). 2017. IEEE.
  • Bai, Y., Control and Simulation of Morphing Quadcopter. 2017, Saint Louis University.
  • Oktay, T. and S. Coban, Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs. Elektronika ir Elektrotechnika, 2017. 23(5): p. 15-20.
  • Oktay, T., et al., Autonomous flight performance improvement of load-carrying unmanned aerial vehicles by active morphing. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2016. 10(1): p. 123-132.
  • Marks, A., J.F. Whidborne, and I. Yamamoto. Control allocation for fault tolerant control of a VTOL octorotor. in Proceedings of 2012 UKACC International Conference on Control. 2012. IEEE.
  • Bouabdallah, S., Design and control of quadrotors with application to autonomous flying. 2007, Epfl.
  • ÇOBAN, S., H.H. BİLGİÇ, and T. OKTAY, Designing, Dynamic Modeling and Simulation of ISTECOPTER. Journal of Aviation, 2019. 3(1): p. 38-44.
  • Barbu, C., et al. Anti-windup design for manual flight control. in Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251). 1999. IEEE.
  • Åström, K.J. and T. Hägglund, Control PID avanzado. 2009: Pearson, Madrid.
  • Oktay, T. and F. Sal, Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016. 38(6): p. 1511-1525.

Quadrotorlarda Diferansiyel Morphingin İleri Uçuşa Etkisinin PID Algoritması Kullanılarak İncelenmesi

Year 2020, Volume: 4 Issue: 1, 15 - 21, 24.06.2020
https://doi.org/10.30518/jav.685256

Abstract

Bu çalışmada dört rotorlu insansız hava aracı olarak bilinen quadrotor'un modellenmesi, kontrolü ve diferansiyel morphingi ele alınmıştır. Diferansiyel morphing ile ileri uçuş performansı ve otonom quadrotor'un modeli sunulmuştur. Quadrotor komplex bir yapıya sahip olduğu için modeli oluşturmak zor bir iştir. Model parametrelerini elde edebilmek için, tam bir modeli Solidworks programında çizilmiştir. Ayrıca Newton-Euler yaklaşımı matematiksel modeli için kullanılır. Simülasyonlar modelden elde edilen parametreler ile Matlab/Simulink ortamında ve durum uzay modeli yaklaşımı kullanılarak yapılır. PID (oransal-integral-türev) quadrotor kontrol algoritması olarak kullanılır. Çalışmanın sonucu olarak quadrotor ileri uçuşu diferansiyel morphing ve PID algoritması kullanılarak yapılmıştır. Morphing olmayan ve morphing olan durumların sistem karakteristikleri karşılaştırmış ve grafikler ile sunulmuştur.

References

  • OKTAY, T., et al., PID based hierarchical autonomous system performance maximization of a hybrid unmanned aerial vehicle (HUAV). Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamalı Bilimler ve Mühendislik, 2017. 18(3): p. 554-562.
  • Oktay, T., et al., Increasing performance of autopilot guided small unmanned helicopter. Int. J. Mech., Aerosp., Ind., Mechatronic Manuf. Eng., 2016. 10(1): p. 133-139.
  • Hintz, C., C. Torno, and L.R.G. Carrillo. Design and dynamic modeling of a rotary wing aircraft with morphing capabilities. in 2014 International Conference on Unmanned Aircraft Systems (ICUAS). 2014. IEEE.
  • Desbiez, A., et al. X-Morf: a crash-separable quadrotor that morfs its X-geometry in flight. in 2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). 2017. IEEE.
  • Avant, T., et al. Dynamics, Hover Configurations, and Rotor Failure Restabilization of a Morphing Quadrotor. in 2018 Annual American Control Conference (ACC). 2018. IEEE.
  • Falanga, D., et al. Aggressive quadrotor flight through narrow gaps with onboard sensing and computing using active vision. in 2017 IEEE international conference on robotics and automation (ICRA). 2017. IEEE.
  • Bai, Y., Control and Simulation of Morphing Quadcopter. 2017, Saint Louis University.
  • Oktay, T. and S. Coban, Simultaneous longitudinal and lateral flight control systems design for both passive and active morphing TUAVs. Elektronika ir Elektrotechnika, 2017. 23(5): p. 15-20.
  • Oktay, T., et al., Autonomous flight performance improvement of load-carrying unmanned aerial vehicles by active morphing. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 2016. 10(1): p. 123-132.
  • Marks, A., J.F. Whidborne, and I. Yamamoto. Control allocation for fault tolerant control of a VTOL octorotor. in Proceedings of 2012 UKACC International Conference on Control. 2012. IEEE.
  • Bouabdallah, S., Design and control of quadrotors with application to autonomous flying. 2007, Epfl.
  • ÇOBAN, S., H.H. BİLGİÇ, and T. OKTAY, Designing, Dynamic Modeling and Simulation of ISTECOPTER. Journal of Aviation, 2019. 3(1): p. 38-44.
  • Barbu, C., et al. Anti-windup design for manual flight control. in Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251). 1999. IEEE.
  • Åström, K.J. and T. Hägglund, Control PID avanzado. 2009: Pearson, Madrid.
  • Oktay, T. and F. Sal, Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016. 38(6): p. 1511-1525.
There are 15 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Oğuz Köse 0000-0002-8069-8749

Tugrul Oktay 0000-0003-4860-2230

Publication Date June 24, 2020
Submission Date February 5, 2020
Acceptance Date June 4, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Köse, O., & Oktay, T. (2020). Investigation of the Effect of Differential Morphing on Forward Flight by Using PID Algorithm in Quadrotors. Journal of Aviation, 4(1), 15-21. https://doi.org/10.30518/jav.685256

Cited By













Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence