Research Article
PDF EndNote BibTex RIS Cite

Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight

Year 2022, Volume 6, Issue 3, 251 - 259, 22.11.2022
https://doi.org/10.30518/jav.1080139

Abstract

Unmanned aerial vehicles are aerial robots controlled by commands sent from the ground control station. While fixed-wing aircraft have the advantages of long range and high altitude, they need a runway to create sufficient lift on the wings. The advantage of Rotary Wing Aircraft is that it does not need a runway, it can perform vertical take-off and landing. It can hover. Thanks to these features, it is used in tasks such as surveillance, search and rescue, and reconnaissance. In areas with chemical wastes or in closed environments without risking the human element; Desired tasks can be performed in places such as sewers, caves, and collapsed houses. For this, there is a flight control computer and software on the aircraft. Rotary-wing aircraft are more unstable than fixed-wing aircraft. Thanks to the flight controller, its stability and controllability are increased. In this study, a quadcopter, multicopter aircraft structure is used. The variation of the angle between the arms of a quadcopter aircraft and its effects on forward and sideways flight are examined. It is required that the aircraft be symmetrical in the longitudinal and lateral axis in order to cope with the disturbances to which it is exposed in external environments. In closed environments, atmospheric events are replaced by obstacles. One of the desirable features of the aircraft is that it can pass through narrow places. For this, the aircraft must perform a shape change. The change in structure will cause it to change in the dynamic’s equations, causing the rotors to react differently during linear and rotational movements of the aircraft. This study focuses on the system design and control of the aircraft. The geometric features obtained from the aircraft designed in the CATIA program were used in the creation of the mathematical model. The obtained values were created using the MATLAB Simulink program to create a digital twin of the aircraft. When the intersection angle between the arms is 90 degrees, the settling time of the 2-degree pitch angle is 7.48 seconds, and when it is 45 degrees, it is 10.3 seconds.

References

  • Bai. Y. Gururajan. S. (2019). Evaluation of A Baseline Controller For Autonomous “Figure-8” Flights Of A Morphing Geometry Quadcopter: Flight Performance. Drones 2019. 3. 70
  • Coban. S. Bilgic. H. H. & Akan. E. (2020). Improving Autonomous Performance of a Passive Morphing Fixed Wing UAV. Information Technology and Control. 49(1). 28-35.
  • Çoban S. Bilgiç H.H. Oktay T. (2019). Designing. dynamic modeling and simulation of ISTECOPTER. Journal of Aviation. 3 (1). 38-44. DOI: 10.30518/jav.564376
  • Desbiez. A. Expert. F. Boyron. M. Diperi. J. Viollet.S. Ruffier. F. (2017). X-Morf: A Crash-Separable Dört Pervaneli That Morfs Its X-Geometry in Flight. 2017 Workshop on Research. Education And Development Of Unmanned Aerial systems (red uas)
  • Di Luca M. Mintchev S. Heitz G. Noca F. Floreano D. (2017). Bioinspired Morphing Wings for Extended Flight Envelope And Roll Control Of Small Drones. Interface Focus 7: 20160092.
  • Eraslan. Y. Özen. E. Oktay. T. (2020) A Literature Review on Determination of Dört Pervaneli Unmanned Aerial Vehicles Propeller Thrust and Power Coefficients. Ejons X – International Conference on Mathematics – Engineering – Natural & Medical Sciences Proceeding Book. 2020 Batumi. Georgia
  • Eraslan. Y. Özen. E. Oktay. T. (2020) The Effect of Change in Angle Between Rotor Arms on Trajectory Tracking Quality of A Pid Controlled Quadcopter. Ejons X – International Conference on Mathematics – Engineering – Natural & Medical Sciences Proceeding Book. 2020 Batumi. Georgia
  • Falanga. D. Kleber. K. Mintchev. S. Floreano. D. Scaramuzza. D. (2018) The Foldable Drone: A Morphing Dört Pervaneli That Can Squeeze and Fly. IEEE Robotics and Automation Letters. Preprint Version. Accepted November. 2018
  • J. Boulet. (1991). Histoire De l’Hélicoptère. France-Empire.
  • Kekeç E.T. Konar M. Dalkıran F. (2020). Sportif Havacılık İçin Düşük Maliyetli. Kullanışlı Variometre Tasarımı Ve Gerçekleştirimi J. Aviat. 4 (1). 79-88.
  • Köse O. Oktay T. (2020 Investigation of The Effect of Differential Morphing on Forward Flight by Using PID Algorithm in Quadcopters J. Aviat. 4 (1). 15-21.
  • Köse.O. Oktay.T.(2021) İnovatif Yöntemlerle Kuadkopter Modellenmesi. Kontrolü Ve Gerçek Zamanlı Uygulamaları. Doktora Tezi. Erciyes Üniversitesi. Fen Bilimleri Enstitüsü. KAYSERİ
  • Oktay. T. & Sal. F. (2016). Combined Passive and Active Helicopter Main Rotor Morphing for Helicopter Energy Save. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. 38(6). 1511- 1525
  • Oktay. T. Özen. E. (2021). Döner Kanatlı İnsansız Hava Aracının Sistem Tasarımı Ve Kontrolü. Avrupa Bilim Ve Teknoloji Dergisi. (27). 318-324.
  • Oktay.T. Özen. E. (2021). Kapalı Ortamlarda Arama Kurtarma Görevi İçin Gelistirilen Şekil Değistirebilen Quadcopterin Sistem Modellemesi Ve Tasarımı. Mas 14th International European Conference on Mathematics. Engineering. Natural&Medical Sciences March 26-28. 2021/Széchenyi István University/HUNGARY
  • Prisacariu. V. Sandru. V. & Rău. C. (2011). Introduction Morphing Technology in Unmanned Aircraft Vehicles (UAV). Paper Presented at The International Conference of Scientific Paper. AFASES.
  • Oktay. T. Uzun. M. Çelik. H. Konar. M. (2017). Pid Based Hierarchical Autonomous System Performance Maximization of a Hybrid Unmanned Aerial Vehicle (Huav). Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering

Year 2022, Volume 6, Issue 3, 251 - 259, 22.11.2022
https://doi.org/10.30518/jav.1080139

Abstract

References

  • Bai. Y. Gururajan. S. (2019). Evaluation of A Baseline Controller For Autonomous “Figure-8” Flights Of A Morphing Geometry Quadcopter: Flight Performance. Drones 2019. 3. 70
  • Coban. S. Bilgic. H. H. & Akan. E. (2020). Improving Autonomous Performance of a Passive Morphing Fixed Wing UAV. Information Technology and Control. 49(1). 28-35.
  • Çoban S. Bilgiç H.H. Oktay T. (2019). Designing. dynamic modeling and simulation of ISTECOPTER. Journal of Aviation. 3 (1). 38-44. DOI: 10.30518/jav.564376
  • Desbiez. A. Expert. F. Boyron. M. Diperi. J. Viollet.S. Ruffier. F. (2017). X-Morf: A Crash-Separable Dört Pervaneli That Morfs Its X-Geometry in Flight. 2017 Workshop on Research. Education And Development Of Unmanned Aerial systems (red uas)
  • Di Luca M. Mintchev S. Heitz G. Noca F. Floreano D. (2017). Bioinspired Morphing Wings for Extended Flight Envelope And Roll Control Of Small Drones. Interface Focus 7: 20160092.
  • Eraslan. Y. Özen. E. Oktay. T. (2020) A Literature Review on Determination of Dört Pervaneli Unmanned Aerial Vehicles Propeller Thrust and Power Coefficients. Ejons X – International Conference on Mathematics – Engineering – Natural & Medical Sciences Proceeding Book. 2020 Batumi. Georgia
  • Eraslan. Y. Özen. E. Oktay. T. (2020) The Effect of Change in Angle Between Rotor Arms on Trajectory Tracking Quality of A Pid Controlled Quadcopter. Ejons X – International Conference on Mathematics – Engineering – Natural & Medical Sciences Proceeding Book. 2020 Batumi. Georgia
  • Falanga. D. Kleber. K. Mintchev. S. Floreano. D. Scaramuzza. D. (2018) The Foldable Drone: A Morphing Dört Pervaneli That Can Squeeze and Fly. IEEE Robotics and Automation Letters. Preprint Version. Accepted November. 2018
  • J. Boulet. (1991). Histoire De l’Hélicoptère. France-Empire.
  • Kekeç E.T. Konar M. Dalkıran F. (2020). Sportif Havacılık İçin Düşük Maliyetli. Kullanışlı Variometre Tasarımı Ve Gerçekleştirimi J. Aviat. 4 (1). 79-88.
  • Köse O. Oktay T. (2020 Investigation of The Effect of Differential Morphing on Forward Flight by Using PID Algorithm in Quadcopters J. Aviat. 4 (1). 15-21.
  • Köse.O. Oktay.T.(2021) İnovatif Yöntemlerle Kuadkopter Modellenmesi. Kontrolü Ve Gerçek Zamanlı Uygulamaları. Doktora Tezi. Erciyes Üniversitesi. Fen Bilimleri Enstitüsü. KAYSERİ
  • Oktay. T. & Sal. F. (2016). Combined Passive and Active Helicopter Main Rotor Morphing for Helicopter Energy Save. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering. 38(6). 1511- 1525
  • Oktay. T. Özen. E. (2021). Döner Kanatlı İnsansız Hava Aracının Sistem Tasarımı Ve Kontrolü. Avrupa Bilim Ve Teknoloji Dergisi. (27). 318-324.
  • Oktay.T. Özen. E. (2021). Kapalı Ortamlarda Arama Kurtarma Görevi İçin Gelistirilen Şekil Değistirebilen Quadcopterin Sistem Modellemesi Ve Tasarımı. Mas 14th International European Conference on Mathematics. Engineering. Natural&Medical Sciences March 26-28. 2021/Széchenyi István University/HUNGARY
  • Prisacariu. V. Sandru. V. & Rău. C. (2011). Introduction Morphing Technology in Unmanned Aircraft Vehicles (UAV). Paper Presented at The International Conference of Scientific Paper. AFASES.
  • Oktay. T. Uzun. M. Çelik. H. Konar. M. (2017). Pid Based Hierarchical Autonomous System Performance Maximization of a Hybrid Unmanned Aerial Vehicle (Huav). Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering

Details

Primary Language English
Subjects Engineering, Aerospace
Journal Section Research Articles
Authors

Tuğrul OKTAY>
ERCIYES UNIVERSITY
0000-0003-4860-2230
Türkiye


Enes ÖZEN> (Primary Author)
HASAN KALYONCU ÜNİVERSİTESİ
0000-0001-7816-2374
Türkiye

Early Pub Date November 21, 2022
Publication Date November 22, 2022
Submission Date February 28, 2022
Acceptance Date August 2, 2022
Published in Issue Year 2022, Volume 6, Issue 3

Cite

Bibtex @research article { jav1080139, journal = {Journal of Aviation}, eissn = {2587-1676}, address = {journalofaviation@gmail.com}, publisher = {Vedat Veli ÇAY}, year = {2022}, volume = {6}, number = {3}, pages = {251 - 259}, doi = {10.30518/jav.1080139}, title = {Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight}, key = {cite}, author = {Oktay, Tuğrul and Özen, Enes} }
APA Oktay, T. & Özen, E. (2022). Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight . Journal of Aviation , 6 (3) , 251-259 . DOI: 10.30518/jav.1080139
MLA Oktay, T. , Özen, E. "Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight" . Journal of Aviation 6 (2022 ): 251-259 <https://dergipark.org.tr/en/pub/jav/issue/73447/1080139>
Chicago Oktay, T. , Özen, E. "Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight". Journal of Aviation 6 (2022 ): 251-259
RIS TY - JOUR T1 - Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight AU - TuğrulOktay, EnesÖzen Y1 - 2022 PY - 2022 N1 - doi: 10.30518/jav.1080139 DO - 10.30518/jav.1080139 T2 - Journal of Aviation JF - Journal JO - JOR SP - 251 EP - 259 VL - 6 IS - 3 SN - -2587-1676 M3 - doi: 10.30518/jav.1080139 UR - https://doi.org/10.30518/jav.1080139 Y2 - 2022 ER -
EndNote %0 Journal of Aviation Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight %A Tuğrul Oktay , Enes Özen %T Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight %D 2022 %J Journal of Aviation %P -2587-1676 %V 6 %N 3 %R doi: 10.30518/jav.1080139 %U 10.30518/jav.1080139
ISNAD Oktay, Tuğrul , Özen, Enes . "Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight". Journal of Aviation 6 / 3 (November 2022): 251-259 . https://doi.org/10.30518/jav.1080139
AMA Oktay T. , Özen E. Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight. JAV. 2022; 6(3): 251-259.
Vancouver Oktay T. , Özen E. Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight. Journal of Aviation. 2022; 6(3): 251-259.
IEEE T. Oktay and E. Özen , "Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight", Journal of Aviation, vol. 6, no. 3, pp. 251-259, Nov. 2022, doi:10.30518/jav.1080139

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence