BibTex RIS Cite

Evaluation of biofilm formation activity of standard microorganism strains

Year 2015, Volume: 6 Issue: 2, 135 - 139, 10.07.2015
https://doi.org/10.5799/ahinjs.01.2015.02.0504

Abstract

Objective: Biofilm is a structure formed by a group of microorganisms. Bacteria in the biofilm lead to much more serious problems in medical and industrial terms when compared to their planktonic forms. In this sense, it is important to know about the biofilm activities of the microorganisms. The ability of certain microorganism strains to form biofilms was shown, and the importance of this subject was tried to be emphasized in this study.

Methods: Fifteen bacteria and two yeast standard strains were used in the study. Microtiter plate method was used in order to determine the biofilm production capacities of standard strains. Biofilm formations were assessed as “nonadherent =0,weakly adherent = I, moderately adherent = II and strongly adherent =III.”

Results: Biofilm formation was observed in all of the 17 standard strains following the study carried out. Among standard microorganisms, Pseudomonas aeruginosa, Staphylococcus aureus, Corynebacterium pseudotuberculosis and Neisseria sicca created a strong biofilm.

Conclusion: It is known that biofilms formed by microorganisms lead to negative consequences in human health. Therefore it’s important to study on understanding biofilm formations. We believe that the biofilm formation data of the standard microorganisms we provide in our study will contribute to the researchers to conduct researches on this subject and the literature related to the subject. J Clin Exp Invest 2015; 6 (2): 135-139

Key words: Biofilm, microtiter plate method, antimicrobial resistance, standard strain

References

  • Abdi-Ali A, Hendiani S, Mohammadi P, Gharavi S. Assessment of biofilm formation and resistance to imipenem and iprofloxacin among clinical isolates of Acinetobacter baumannii in Tehran. Jundishapur J Microbiol 2014;7:e8606.
  • Boşgelmez-Tınaz G. Quorum sensing in gram-negative bacteria. Turk J Biol 2003;27:85-93.
  • Rao RS, Karthika RU, Singh SP, et al. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii.
  • Indian J Med Microbiol 2008;26:333–337.
  • Costerton Cucarella C, Tormo MA, Ubeda C, et al. Role
  • of biofilm associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun
  • ;72:2177-2178.
  • Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985;22:996-1006.
  • Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 1994;38:2125–2133.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167–193.
  • Altun HU, Şener B. Biofilm infections and antimicrobial resistance Hacettepe Medical Journal 2008;39:82-88.
  • Öztürk ŞB, Sakarya S, Öncü S, Ertuğrul MB. Biofilm and device-associated infections. Klimik Dergisi 2008;21:79-86.
  • Chusri S, Phatthalung PN, Voravuthikunchai SP. Antibiofilm activity of Quercus infectoria G. Olivier against methicillinesistant Staphylococcus aureus Lett Appl Microbiol 2012;54:511-517.
  • Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol 1995;49:711-745.
  • Akbaş E. Basic principles in investigation of Legionella in hospital water systems. Türk Mikrobiyoloji Cemiyeti Dergisi 2013;43:1-11.
  • Karaman M, Yılmaz O, Bayrakal V, Bahar İH. Pseudomonas aeruginosa quorum sensing responses and biofilm production under the influence of gentamicin Tutar, et al. Biofilm formation activity of microorganisms139J Clin Exp Invest www.jceionline.org Vol 6, No 2, June 2015 and imipenem: In vivo modelling ANKEM Dergisi 2010;24:76-81.
  • Naz I, Batool SA, Ali N, et al. Monitoring of growth and physiological activities of biofilm during succession on olystyrene from activated sludge under aerobic and anaerobic conditions. Environ Monit Assess 2013;185:6881-6892.
  • Bayrakal V, Baskın H, Bahar İH. Experimental microenvironment modeling study: quorum sensing and biofilm responses of Pseudomonas aeruginosa in different cell lines Türkiye Klinikleri J Med Sci 2009;29:637-642.
  • Mataracı A, Gerçeker AA. Evaluation of the minimum
  • bactericidal concentrations of various disinfectants against Pseudomonas aeruginosa in biofilm cultures. ANKEM Dergisi 2011;25:209-214.
  • Kloos WE, Bannerman TL. Update on clinical significance of coagulase negative Staphylococcus. Clin Microb Rev 2005;7:117-140.
  • Göçmen SJ, Büyükkoçak Ü, Çağlayan O. Effect of parenteral nutrition solutions on biofilm formation of coagulase-negative Staphylococci: An experimental study. J Clin Exp Invest 2012;3:505-509.
  • Gündoğan N, Çıtak S, Turan E. Slime production, DNase activity and antibiotic resistance of Staphylococcus aureus isolated from raw milk, pasteurized milk and ice cream samples. Food Cont 2006;17:389-392.
  • Çıtak S, Varlık O, Gündoğan N. Slime production and DNase activity of staphylococci isolated from raw milk. J Food Safety 2003;23:281-288.
  • Vasudevan P, Nair MKM, Annamali T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 2003;92:179-185.
  • Gündoğan N, Ataol Ö. Determination of biofilm production and DNase activity of S. aureus and coagulase negative staphylococci isolated from meat samples Türk Hijyen ve Deneysel Biyoloji Dergisi 2012;69:135-142.
  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 2004; 186:1838-1850.
  • Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 2001;18:163-170.
  • Shin JH, Kee SJ, Shin MG, et al. Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 2002;40:1244-1248.
  • Demirbilek M, Timurkaynak F, Can F, et al. Biofilm production and antifungal susceptibility patterns of Candida species isolated from hospitalized patients Mikrobiyol Bült 2007;41:261-269.
  • Yoshida A, Ansai T, Takehara T, Kuramitsu HK. LuxSbased signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 2005;71:2372-2380.
  • Berger SA Gorea A, Peyser MR, Edberg SC. Bartholin’s gland abscess caused by Neisseria sicca. J Clin Microbiol 1988;26:1589.
  • Myszka K, Czaczyk K. Effect of starvatıon stress on morphological changes and production of adhesive exopolysaccharide (eps) by Proteus vulgaris Acta Sci
  • Pol Technol Aliment 2011;10:303-312.
  • Shikh-Bardsiri H, Shakibaie MR. Antibiotic resistance pattern among biofilm producing and non producing Proteus strains isolated from hospitalized patients; matter of hospital hygiene and antimicrobial stewardship. Pak J Biol Sci 2013;16:1496-1502.
  • Bandeira M, Carvalho PA, Duarte A, Jordao L. Exploring dangerous connections between Klebsiella pneumoniae biofilms and healthcare-associated infections. Pathogens 2014;19:720-731.
  • Monte J, Abreu AC, Borges A, et al. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 2014;3:473-498.
  • Prodduk V, Annous BA, Liu L, Yam KL. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts. J Food Prot 2014;77:1876-1881.
  • Pasvolsky R, Zakin V, Ostrova I, Shemesh M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int J Food Microbiol 2014;181:19-27

Standart mikroorganizma suşlarının biyofilm formasyon aktivitelerinin değerlendirilmesi

Year 2015, Volume: 6 Issue: 2, 135 - 139, 10.07.2015
https://doi.org/10.5799/ahinjs.01.2015.02.0504

Abstract

Amaç: Biyofilm mikroorganizmaların meydana getirdikleri bir yapıdır. Biyofilm içerisindeki bakteriler, planktonik formları ile kıyaslandığında tıbbi ve endüstriyel açıdan çok daha önemli sorunlara neden olmaktadır. Bu bakımdan mikroorganizmaların biyofilm aktivitelerinin bilinmesi önemlidir. Bu çalışmada bazı mikroorganizma suşlarının biyofilm oluşturabilme yetenekleri gösterilerek bu konunun önemi vurgulanmaya çalışılmıştır.Yöntemler: Çalışmada 15 adet bakteri ve iki adet maya standart suşu kullanılmıştır. Standart suşların biyofilm üretim kapasitelerinin belirlenmesi amacıyla mikrotitre plak yöntemi kullanılmıştır. Biyofilm formasyonları negatif kontrol değeri baz alınarak ‘biyofilm oluşturmayan =0, zayıf biyofilm = I, orta dereceli biyofilm = II ve güçlü biyofilm =III olarak değerlendirilmiştir.Bulgular: Yapılan çalışma sonrasında 17 adet standart suşun tamamında biyofilm oluşumu gözlenmiştir. Standart mikroorganizmalardan Pseudomonas aeruginosa, Staphylococcus aureus, Corynebacterium pseudotuberculosis ve Neisseria sicca güçlü biyofilm oluşturmuşlardır. Sonuç: Mikroorganizmaların oluşturdukları biyofilmlerin insan sağlığı açısından olumsuz sonuçlara yol açtığı bilinmektedir. Bu bakımdan biyofilm formasyonlarının anlaşılması ile ilgili yapılacak çalışmalar önemlidir. Çalışmamızda sunduğumuz standart mikroorganizmalara ait biyofilm formasyon verilerinin bu konuda çalışma yapacak araştırıcılara ve konuyla ilgili literatüre katkı sağlayacağını düşünmekteyiz

References

  • Abdi-Ali A, Hendiani S, Mohammadi P, Gharavi S. Assessment of biofilm formation and resistance to imipenem and iprofloxacin among clinical isolates of Acinetobacter baumannii in Tehran. Jundishapur J Microbiol 2014;7:e8606.
  • Boşgelmez-Tınaz G. Quorum sensing in gram-negative bacteria. Turk J Biol 2003;27:85-93.
  • Rao RS, Karthika RU, Singh SP, et al. Correlation between biofilm production and multiple drug resistance in imipenem resistant clinical isolates of Acinetobacter baumannii.
  • Indian J Med Microbiol 2008;26:333–337.
  • Costerton Cucarella C, Tormo MA, Ubeda C, et al. Role
  • of biofilm associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun
  • ;72:2177-2178.
  • Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985;22:996-1006.
  • Suci PA, Mittelman MW, Yu FP, Geesey GG. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 1994;38:2125–2133.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322.
  • Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002;15:167–193.
  • Altun HU, Şener B. Biofilm infections and antimicrobial resistance Hacettepe Medical Journal 2008;39:82-88.
  • Öztürk ŞB, Sakarya S, Öncü S, Ertuğrul MB. Biofilm and device-associated infections. Klimik Dergisi 2008;21:79-86.
  • Chusri S, Phatthalung PN, Voravuthikunchai SP. Antibiofilm activity of Quercus infectoria G. Olivier against methicillinesistant Staphylococcus aureus Lett Appl Microbiol 2012;54:511-517.
  • Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol 1995;49:711-745.
  • Akbaş E. Basic principles in investigation of Legionella in hospital water systems. Türk Mikrobiyoloji Cemiyeti Dergisi 2013;43:1-11.
  • Karaman M, Yılmaz O, Bayrakal V, Bahar İH. Pseudomonas aeruginosa quorum sensing responses and biofilm production under the influence of gentamicin Tutar, et al. Biofilm formation activity of microorganisms139J Clin Exp Invest www.jceionline.org Vol 6, No 2, June 2015 and imipenem: In vivo modelling ANKEM Dergisi 2010;24:76-81.
  • Naz I, Batool SA, Ali N, et al. Monitoring of growth and physiological activities of biofilm during succession on olystyrene from activated sludge under aerobic and anaerobic conditions. Environ Monit Assess 2013;185:6881-6892.
  • Bayrakal V, Baskın H, Bahar İH. Experimental microenvironment modeling study: quorum sensing and biofilm responses of Pseudomonas aeruginosa in different cell lines Türkiye Klinikleri J Med Sci 2009;29:637-642.
  • Mataracı A, Gerçeker AA. Evaluation of the minimum
  • bactericidal concentrations of various disinfectants against Pseudomonas aeruginosa in biofilm cultures. ANKEM Dergisi 2011;25:209-214.
  • Kloos WE, Bannerman TL. Update on clinical significance of coagulase negative Staphylococcus. Clin Microb Rev 2005;7:117-140.
  • Göçmen SJ, Büyükkoçak Ü, Çağlayan O. Effect of parenteral nutrition solutions on biofilm formation of coagulase-negative Staphylococci: An experimental study. J Clin Exp Invest 2012;3:505-509.
  • Gündoğan N, Çıtak S, Turan E. Slime production, DNase activity and antibiotic resistance of Staphylococcus aureus isolated from raw milk, pasteurized milk and ice cream samples. Food Cont 2006;17:389-392.
  • Çıtak S, Varlık O, Gündoğan N. Slime production and DNase activity of staphylococci isolated from raw milk. J Food Safety 2003;23:281-288.
  • Vasudevan P, Nair MKM, Annamali T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 2003;92:179-185.
  • Gündoğan N, Ataol Ö. Determination of biofilm production and DNase activity of S. aureus and coagulase negative staphylococci isolated from meat samples Türk Hijyen ve Deneysel Biyoloji Dergisi 2012;69:135-142.
  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 2004; 186:1838-1850.
  • Ramage G, Vandewalle K, Wickes BL, Lopez-Ribot JL. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol 2001;18:163-170.
  • Shin JH, Kee SJ, Shin MG, et al. Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 2002;40:1244-1248.
  • Demirbilek M, Timurkaynak F, Can F, et al. Biofilm production and antifungal susceptibility patterns of Candida species isolated from hospitalized patients Mikrobiyol Bült 2007;41:261-269.
  • Yoshida A, Ansai T, Takehara T, Kuramitsu HK. LuxSbased signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 2005;71:2372-2380.
  • Berger SA Gorea A, Peyser MR, Edberg SC. Bartholin’s gland abscess caused by Neisseria sicca. J Clin Microbiol 1988;26:1589.
  • Myszka K, Czaczyk K. Effect of starvatıon stress on morphological changes and production of adhesive exopolysaccharide (eps) by Proteus vulgaris Acta Sci
  • Pol Technol Aliment 2011;10:303-312.
  • Shikh-Bardsiri H, Shakibaie MR. Antibiotic resistance pattern among biofilm producing and non producing Proteus strains isolated from hospitalized patients; matter of hospital hygiene and antimicrobial stewardship. Pak J Biol Sci 2013;16:1496-1502.
  • Bandeira M, Carvalho PA, Duarte A, Jordao L. Exploring dangerous connections between Klebsiella pneumoniae biofilms and healthcare-associated infections. Pathogens 2014;19:720-731.
  • Monte J, Abreu AC, Borges A, et al. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 2014;3:473-498.
  • Prodduk V, Annous BA, Liu L, Yam KL. Evaluation of chlorine dioxide gas treatment to inactivate Salmonella enterica on mungbean sprouts. J Food Prot 2014;77:1876-1881.
  • Pasvolsky R, Zakin V, Ostrova I, Shemesh M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int J Food Microbiol 2014;181:19-27
There are 40 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Uğur Tutar

Cem Çelik This is me

Mehmet Ataş This is me

Tutku Tunç This is me

Mustafa Gözel This is me

Publication Date July 10, 2015
Published in Issue Year 2015 Volume: 6 Issue: 2

Cite

APA Tutar, U., Çelik, C., Ataş, M., Tunç, T., et al. (2015). Evaluation of biofilm formation activity of standard microorganism strains. Journal of Clinical and Experimental Investigations, 6(2), 135-139. https://doi.org/10.5799/ahinjs.01.2015.02.0504
AMA Tutar U, Çelik C, Ataş M, Tunç T, Gözel M. Evaluation of biofilm formation activity of standard microorganism strains. J Clin Exp Invest. July 2015;6(2):135-139. doi:10.5799/ahinjs.01.2015.02.0504
Chicago Tutar, Uğur, Cem Çelik, Mehmet Ataş, Tutku Tunç, and Mustafa Gözel. “Evaluation of Biofilm Formation Activity of Standard Microorganism Strains”. Journal of Clinical and Experimental Investigations 6, no. 2 (July 2015): 135-39. https://doi.org/10.5799/ahinjs.01.2015.02.0504.
EndNote Tutar U, Çelik C, Ataş M, Tunç T, Gözel M (July 1, 2015) Evaluation of biofilm formation activity of standard microorganism strains. Journal of Clinical and Experimental Investigations 6 2 135–139.
IEEE U. Tutar, C. Çelik, M. Ataş, T. Tunç, and M. Gözel, “Evaluation of biofilm formation activity of standard microorganism strains”, J Clin Exp Invest, vol. 6, no. 2, pp. 135–139, 2015, doi: 10.5799/ahinjs.01.2015.02.0504.
ISNAD Tutar, Uğur et al. “Evaluation of Biofilm Formation Activity of Standard Microorganism Strains”. Journal of Clinical and Experimental Investigations 6/2 (July 2015), 135-139. https://doi.org/10.5799/ahinjs.01.2015.02.0504.
JAMA Tutar U, Çelik C, Ataş M, Tunç T, Gözel M. Evaluation of biofilm formation activity of standard microorganism strains. J Clin Exp Invest. 2015;6:135–139.
MLA Tutar, Uğur et al. “Evaluation of Biofilm Formation Activity of Standard Microorganism Strains”. Journal of Clinical and Experimental Investigations, vol. 6, no. 2, 2015, pp. 135-9, doi:10.5799/ahinjs.01.2015.02.0504.
Vancouver Tutar U, Çelik C, Ataş M, Tunç T, Gözel M. Evaluation of biofilm formation activity of standard microorganism strains. J Clin Exp Invest. 2015;6(2):135-9.