Research Article
BibTex RIS Cite

Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model

Year 2022, Volume: 14 Issue: 1, 1063 - 1073, 24.07.2022
https://doi.org/10.37212/jcnos.1147935

Abstract

Alzheimer’s disease is a common neurodegenerative disease. Microglia induces oxidative stress in the brain for engulfing bacteria and viruses. The accumulating data indicate that oxidative stress and apoptosis are two main actors for the induction of microglia activation-induced Alzheimer’s Disease. Oxidative stress is one of many triggers that activate the transient receptor potential melastatin 2 (TRPM2) channel. Glutathione (GSH) is a main cytosolic antioxidant in the mammalian cells. The GSH depletion via the activation of TRPM2 induces oxidative stress and apoptosis in neuronal cells. It has not yet been researched how GSH depletion via activation of TRPM2 affects oxidative stress and apoptosis in microglial cells with the Alzheimer's disease model. The BV2 cells divided into 5 groups as control, buthionine sulphoximine (BSO and 0.5 mM for 6 h), amyloid beta (1 uM for 72 h), amyloid beta+BSO, and amyloid beta+BSO+GSH (10 mM for 2 h). In the BSO group, the levels of apoptosis, mitochondrial membrane potential, cytosolic free oxygen reactive species (cyROS), caspase (Casps) -3, Casps -8, and Casps -9 were increased as compared to the control group, although cell viability level was decreased. The expression levels of TRPM2, Casps -3, Casps -9, Bax, Bcl-2, and PARP-1 were also increased in the BSO group. In addition, their levels were further increased in the amyloid beta and BSO+amyloid beta groups as compared to the BSO group. However, the changes were modulated in the BSO+amyloid beta+GSH group by the incubation of GSH. In conclusion, the depletion of GSH increased apoptosis and cyROS levels via activation of caspases and TRPM2 in the amyloid beta-induced microglia cells. The treatment of GSH may be a potential target on the apoptosis and oxidative stress in the amyloid beta-induced microglia cells.

References

  • Abdul H, M., Butterfield DA. (2007). Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. Free Radic Biol Med. 42(3):371-384. https://doi.org/10.1016/j.freeradbiomed.2006.11.006
  • Abe K, Misawa M. (2003). Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci Res. 45(1):25-31. https://doi.org/10.1016/s0168- 0102(02)00190-6.
  • Akhtar F, Rouse CA, Catano G, et al. (2017). Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. J Neuroinflammation 14(1):195. https://doi.org/10.1186/s12974-017-0965-8.
  • Akyuva Y, Nazıroğlu M, Yıldızhan K. (2021). Selenium prevents interferon-gamma induced activation of TRPM2 channel and inhibits inflammation, mitochondrial oxidative stress, and apoptosis in microglia. Metab Brain Dis. 36(2):285-298. https://doi.org/10.1007/s11011-020-00624-0.
  • An X, Fu Z, Mai C, et al. (2019). Increasing the TRPM2 channel expression in human neuroblastoma SH-SY5Y cells augments the susceptibility to ROS-induced cell death. Cells. 8(1). https://doi.org/10.3390/cells8010028
  • Ataizi ZS, Ertilav K, Naziroglu M. (2019). Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca(2+) influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab Brain Dis 34(4):1077–1089. https://doi.org/10.1007/s11011-019-00428-x
  • Bond CE, Greenfield SA. (2007). Multiple cascade effects of oxidative stress on astroglia. Glia. 55(13):1348-1361. https://doi.org/10.1002/glia.20547.
  • Buelow B, Song Y, Scharenberg AM. (2008). The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem. 283(36): 24571– 24583. https://doi.org/10.1074/jbc.M802673200
  • Butterfield DA. (2003). Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer's disease brain: mechanisms and consequences. Curr Med Chem. 10(24):2651-2659. https://doi.org/10.2174/0929867033456422.
  • Carvalho da Fonseca AC, Wang H, Fan H, et al. (2014). Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J Neuroimmunol, 274(1-2), 71–77. https://doi.org/10.1016/j.jneuroim.2014.06.021
  • Çınar R, Nazıroğlu M. (2022). TRPM2 Channel Inhibition Attenuates Amyloid β42-Induced Apoptosis and Oxidative Stress in the Hippocampus of Mice. Cell Mol Neurobiol. 2022 Jul 15. https://doi.org/10.1007/s10571-022-01253-0. Epub ahead of print.
  • Diaz-Hung ML, Yglesias-Rivera A, Hernandez-Zimbron LF, et al (2016). Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats. Neuroscience 335:207– 220. https://doi.org/10.1016/j.neuroscience.2016.08.023
  • Dringen R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal. 7(9-10):1223-33. https://doi.org/10.1089/ars.2005.7.1223.
  • Franco R, DeHaven WI, Sifre MI, Bortner CD, Cidlowski JA. (2008). Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J Biol Chem. 283(52):36071–36087. https://doi.org/10.1074/jbc.M807061200.
  • Ghoweri AO, Gagolewicz P, Frazier HN, et al. (2020). Neuronal Calcium Imaging, Excitability, and Plasticity Changes in the Aldh2-/- Mouse Model of Sporadic Alzheimer's Disease. J. Alzheimer's Dis. 77(4):1623- 1637. https://doi.org/10.3233/JAD-200617
  • Güzel M, Nazıroğlu M, Akpınar O, Çınar R. (2021). Interferon Gamma-Mediated Oxidative Stress Induces Apoptosis, Neuroinflammation, Zinc Ion Influx, and TRPM2 Channel Activation in Neuronal Cell Line: Modulator Role of Curcumin. Inflammation. 44(5):1878-1894. https://doi.org/10.1007/s10753-021-01465-4.
  • Halliwell B. (2006). Oxidative stress and neurodegeneration: where are we now? J Neurochem. 97(6):1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x.
  • Hool LC. (2008) Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating pathology. Clin Exp Pharmacol Physiol. 35(2):229-34. https://doi.org/10.1111/j.1440-1681.2007.04727.x.
  • Jiang C, Zhang C, Song J, Ji X, Wang W. (2021). Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR). Spectrochim Acta A Mol Biomol Spectrosc. 250:119316. https://doi.org/10.1016/j.saa.2020.119316.
  • Kahya MC, Naz.ro.lu M, Ovey .S. (2017). Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca2+ Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium. Mol Neurobiol. 54(3):2345-2360. https://doi.org/10.1007/s12035-016-9727-3.
  • Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010). Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533-2545. https://doi.org/10.1096/fj.09-149997
  • Lee M, Kwon BM, Suk K, McGeer E, McGeer PL. (2012). Effects of obovatol on GSH depleted glia-mediated neurotoxicity and oxidative damage. J Neuroimmune Pharmacol. 7(1):173-186. https://doi.org/10.1007/s11481-011-9300-9
  • Mortadza SS, Sim JA, Stacey M, Jiang LH. (2017). Signalling mechanisms mediating Zn(2+)-induced TRPM2 channel activation and cell death in microglial cells. Sci Rep 7:45032. https://doi.org/10.1038/srep45032.
  • Mucke L, Selkoe DJ. (2012) Neurotoxicity of amyloid ƒÀ-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. Jul;2(7):a006338. https://doi.org/10.1101/cshperspect.a006338.
  • Murphy A, Sunohara JR, Sundaram M, et al. (2003). Induction of protein kinase C substrates, Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP), by amyloid beta protein in mouse BV-2 microglial cells. Neurosci Letters, 347(1):9-12. https://doi.org/10.1016/s0304-3940(03)00648-7
  • Nazıroğlu M, Ozgul C, Ci. B, Do.an S, U.uz AC. (2011). Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. J Membr Biol. 242(3):109-118. https://doi.org/10.1007/s00232-011-9382-6.
  • Nazıroğlu M. (2007a). New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res. 32(11):1990-2001. https://doi.org/10.1007/s11064-007-9386-x.
  • Nazıroğlu M. (2007b). Molecular Mechanisms of vitamin E on intracellular signaling pathways in brain. In Reactive oxygen species and diseases. Ed.Laszlo; Goth, Kerala, India: Research Signpost Press: pp 239.256.
  • Ovey IS, Naziroglu M. (2015). Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225.233. https://doi.org/10.1016/j.neuroscience.2014.09.078.
  • Ovey IS, Nazıroğlu M. (2015). Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience. 284:225-233. https://doi.org/10.1016/j.neuroscience.2014.09.078.
  • Ovey .S, Nazıroğlu M. (2021). Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer's disease. J Recept Signal Transduct Res. 41(3):273-283. https://doi.org/10.1080/10799893.2020.1806321.
  • Ozgul C, Naziroglu M (2012) TRPM2 channel protective properties of Nacetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 106(2):122.128. https://doi.org/10.1016/j.physbeh.2012.01.014
  • Ozkaya D, Nazıroğlu M (2020) Curcumin diminishes cisplatin-induced apoptosis and mitochondrial oxidative stress through inhibition of TRPM2 channel signaling pathway in mouse optic nerve. J Recept Signal Transduct Res 40(2):97.108. https://doi.org/10.1080/10799893.2020.1720240.
  • Pandey M, Choudhury H, Verma RK, et al. (2020). Nanoparticles Based Intranasal Delivery of Drug to Treat Alzheimer's Disease: A Recent Update. CNS Neurol Disord Drug Targets. 19(9):648-662. https://doi.org/10.2174/1871527319999200819095620.
  • Roychowdhury S, Luthe A, Keilhoff G, Wolf G, Horn TF. (2002). Oxidative stress in glial cultures: detection by DAF-2 fluorescence used as a tool to measure peroxynitrite rather than nitric oxide. Glia. 38(2):103-114. https://doi.org/10.1002/glia.10024.
  • Santo-Domingo J, Demaurex N. (2010). Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 1797(6-7):907-912. https://doi.org/10.1016/j.bbabio.2010.01.005.
  • Scheltens, P, De Strooper B, Kivipelto M, et al. (2021). Alzheimer's disease. Lancet 397(10284):1577.1590. https://doi.org/10.1016/S0140-6736(20)32205-4.
  • Sciacca MF, Kotler SA, Brender JR, Chen J, Lee DK, Ramamoorthy A. (2012). Two-step mechanism of membrane disruption by Ab through membrane fragmentation and pore formation. Biophys J. 103(4):702 710. https://doi.org/10.1016/j.bpj.2012.06.045.
  • Simpson DSA, Oliver PL. (2020). ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel). 9(8):743. https://doi.org/10.3390/antiox9080743.
  • Singh BK, Tripathi M, Pandey PK, Kakkar P. (2011). Alteration in mitochondrial thiol enhances calcium ion dependent membrane permeability transition and dysfunction in vitro: a cross-talk between mtThiol, Ca(2+), and ROS. Mol Cell Biochem. 357(1-2):373-385. https://doi.org/10.1007/s11010-011-0908-0.
  • Staerck C, Gastebois A, Vandeputte P, et al. (2017) Microbial antioxidant defense enzymes. Microb Pathog. 110:56-65. https://doi.org/10.1016/j.micpath.2017.06.015.
  • Sun, Q, Jia N, Li X, Yang J, Chen G. (2019). Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3b-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer's disease. Aging 11(12), 4107.4124. https://doi.org/10.18632/aging.102041.
  • Uguz AC, Oz A, Nazıroğlu M. (2016). Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J Recept Signal Transduct Res. 36(4):395-401. https://doi.org/10.3109/10799893.2015.1108337.
  • Uğuz AC, Oz A, Yilmaz B, Altunbas S, Celik O. (2015). Melatonin attenuates apoptosis and mitochondrial depolarization levels in hypoxic conditions of SH-SY5Y neuronal cells induced by cobalt chloride (CoCl 2). Turkish J Biol. 39(6):896-903.
  • Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH. (2004). Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol. 136(4):3892-904. https://doi.org/10.1104/pp.104.042754.
  • Wang, Q, Ge X, Zhang J, Chen L. (2020). Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis. Aging. 12(23): 23974–23995. https://doi.org/10.18632/aging.104079.
  • Yazgan Y, Naziroglu M (2017). Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17beta-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol. 54(10):7620–7638. https://doi.org/10.1007/s12035-016-0232-5.
  • Yildizhan K, Çinar R, Naziroğlu M. (2022). The involvement of TRPM2 on the MPP+-induced oxidative neurotoxicity and apoptosis in hippocampal neurons from neonatal mice: protective role of resveratrol. Neurol Res. 1-9. https://doi.org/10.1080/01616412.2022.2027644.
  • Yıldızhan K, Nazıroğlu M. (2020). Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol Neurobiol. 57(8):3508-3525. https://doi.org/10.1007/s12035-020-01974-7.
  • Zhang Q, Li J, Liu C, et al F. (2015). Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience. 305:169-82. https://doi.org/10.1016/j.neuroscience.2015.08.002.
  • Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. (2017). Regulation of microglial activation in stroke. Acta Pharmacol Sin. 38(4):445-458. https://doi.org/10.1038/aps.2016.162.
Year 2022, Volume: 14 Issue: 1, 1063 - 1073, 24.07.2022
https://doi.org/10.37212/jcnos.1147935

Abstract

References

  • Abdul H, M., Butterfield DA. (2007). Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. Free Radic Biol Med. 42(3):371-384. https://doi.org/10.1016/j.freeradbiomed.2006.11.006
  • Abe K, Misawa M. (2003). Amyloid beta protein enhances the clearance of extracellular L-glutamate by cultured rat cortical astrocytes. Neurosci Res. 45(1):25-31. https://doi.org/10.1016/s0168- 0102(02)00190-6.
  • Akhtar F, Rouse CA, Catano G, et al. (2017). Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. J Neuroinflammation 14(1):195. https://doi.org/10.1186/s12974-017-0965-8.
  • Akyuva Y, Nazıroğlu M, Yıldızhan K. (2021). Selenium prevents interferon-gamma induced activation of TRPM2 channel and inhibits inflammation, mitochondrial oxidative stress, and apoptosis in microglia. Metab Brain Dis. 36(2):285-298. https://doi.org/10.1007/s11011-020-00624-0.
  • An X, Fu Z, Mai C, et al. (2019). Increasing the TRPM2 channel expression in human neuroblastoma SH-SY5Y cells augments the susceptibility to ROS-induced cell death. Cells. 8(1). https://doi.org/10.3390/cells8010028
  • Ataizi ZS, Ertilav K, Naziroglu M. (2019). Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca(2+) influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab Brain Dis 34(4):1077–1089. https://doi.org/10.1007/s11011-019-00428-x
  • Bond CE, Greenfield SA. (2007). Multiple cascade effects of oxidative stress on astroglia. Glia. 55(13):1348-1361. https://doi.org/10.1002/glia.20547.
  • Buelow B, Song Y, Scharenberg AM. (2008). The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem. 283(36): 24571– 24583. https://doi.org/10.1074/jbc.M802673200
  • Butterfield DA. (2003). Amyloid beta-peptide [1-42]-associated free radical-induced oxidative stress and neurodegeneration in Alzheimer's disease brain: mechanisms and consequences. Curr Med Chem. 10(24):2651-2659. https://doi.org/10.2174/0929867033456422.
  • Carvalho da Fonseca AC, Wang H, Fan H, et al. (2014). Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages. J Neuroimmunol, 274(1-2), 71–77. https://doi.org/10.1016/j.jneuroim.2014.06.021
  • Çınar R, Nazıroğlu M. (2022). TRPM2 Channel Inhibition Attenuates Amyloid β42-Induced Apoptosis and Oxidative Stress in the Hippocampus of Mice. Cell Mol Neurobiol. 2022 Jul 15. https://doi.org/10.1007/s10571-022-01253-0. Epub ahead of print.
  • Diaz-Hung ML, Yglesias-Rivera A, Hernandez-Zimbron LF, et al (2016). Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats. Neuroscience 335:207– 220. https://doi.org/10.1016/j.neuroscience.2016.08.023
  • Dringen R. (2005). Oxidative and antioxidative potential of brain microglial cells. Antioxid Redox Signal. 7(9-10):1223-33. https://doi.org/10.1089/ars.2005.7.1223.
  • Franco R, DeHaven WI, Sifre MI, Bortner CD, Cidlowski JA. (2008). Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J Biol Chem. 283(52):36071–36087. https://doi.org/10.1074/jbc.M807061200.
  • Ghoweri AO, Gagolewicz P, Frazier HN, et al. (2020). Neuronal Calcium Imaging, Excitability, and Plasticity Changes in the Aldh2-/- Mouse Model of Sporadic Alzheimer's Disease. J. Alzheimer's Dis. 77(4):1623- 1637. https://doi.org/10.3233/JAD-200617
  • Güzel M, Nazıroğlu M, Akpınar O, Çınar R. (2021). Interferon Gamma-Mediated Oxidative Stress Induces Apoptosis, Neuroinflammation, Zinc Ion Influx, and TRPM2 Channel Activation in Neuronal Cell Line: Modulator Role of Curcumin. Inflammation. 44(5):1878-1894. https://doi.org/10.1007/s10753-021-01465-4.
  • Halliwell B. (2006). Oxidative stress and neurodegeneration: where are we now? J Neurochem. 97(6):1634-1658. https://doi.org/10.1111/j.1471-4159.2006.03907.x.
  • Hool LC. (2008) Evidence for the regulation of L-type Ca2+ channels in the heart by reactive oxygen species: mechanism for mediating pathology. Clin Exp Pharmacol Physiol. 35(2):229-34. https://doi.org/10.1111/j.1440-1681.2007.04727.x.
  • Jiang C, Zhang C, Song J, Ji X, Wang W. (2021). Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR). Spectrochim Acta A Mol Biomol Spectrosc. 250:119316. https://doi.org/10.1016/j.saa.2020.119316.
  • Kahya MC, Naz.ro.lu M, Ovey .S. (2017). Modulation of Diabetes-Induced Oxidative Stress, Apoptosis, and Ca2+ Entry Through TRPM2 and TRPV1 Channels in Dorsal Root Ganglion and Hippocampus of Diabetic Rats by Melatonin and Selenium. Mol Neurobiol. 54(3):2345-2360. https://doi.org/10.1007/s12035-016-9727-3.
  • Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010). Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533-2545. https://doi.org/10.1096/fj.09-149997
  • Lee M, Kwon BM, Suk K, McGeer E, McGeer PL. (2012). Effects of obovatol on GSH depleted glia-mediated neurotoxicity and oxidative damage. J Neuroimmune Pharmacol. 7(1):173-186. https://doi.org/10.1007/s11481-011-9300-9
  • Mortadza SS, Sim JA, Stacey M, Jiang LH. (2017). Signalling mechanisms mediating Zn(2+)-induced TRPM2 channel activation and cell death in microglial cells. Sci Rep 7:45032. https://doi.org/10.1038/srep45032.
  • Mucke L, Selkoe DJ. (2012) Neurotoxicity of amyloid ƒÀ-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med. Jul;2(7):a006338. https://doi.org/10.1101/cshperspect.a006338.
  • Murphy A, Sunohara JR, Sundaram M, et al. (2003). Induction of protein kinase C substrates, Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP), by amyloid beta protein in mouse BV-2 microglial cells. Neurosci Letters, 347(1):9-12. https://doi.org/10.1016/s0304-3940(03)00648-7
  • Nazıroğlu M, Ozgul C, Ci. B, Do.an S, U.uz AC. (2011). Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. J Membr Biol. 242(3):109-118. https://doi.org/10.1007/s00232-011-9382-6.
  • Nazıroğlu M. (2007a). New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res. 32(11):1990-2001. https://doi.org/10.1007/s11064-007-9386-x.
  • Nazıroğlu M. (2007b). Molecular Mechanisms of vitamin E on intracellular signaling pathways in brain. In Reactive oxygen species and diseases. Ed.Laszlo; Goth, Kerala, India: Research Signpost Press: pp 239.256.
  • Ovey IS, Naziroglu M. (2015). Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225.233. https://doi.org/10.1016/j.neuroscience.2014.09.078.
  • Ovey IS, Nazıroğlu M. (2015). Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience. 284:225-233. https://doi.org/10.1016/j.neuroscience.2014.09.078.
  • Ovey .S, Nazıroğlu M. (2021). Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer's disease. J Recept Signal Transduct Res. 41(3):273-283. https://doi.org/10.1080/10799893.2020.1806321.
  • Ozgul C, Naziroglu M (2012) TRPM2 channel protective properties of Nacetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 106(2):122.128. https://doi.org/10.1016/j.physbeh.2012.01.014
  • Ozkaya D, Nazıroğlu M (2020) Curcumin diminishes cisplatin-induced apoptosis and mitochondrial oxidative stress through inhibition of TRPM2 channel signaling pathway in mouse optic nerve. J Recept Signal Transduct Res 40(2):97.108. https://doi.org/10.1080/10799893.2020.1720240.
  • Pandey M, Choudhury H, Verma RK, et al. (2020). Nanoparticles Based Intranasal Delivery of Drug to Treat Alzheimer's Disease: A Recent Update. CNS Neurol Disord Drug Targets. 19(9):648-662. https://doi.org/10.2174/1871527319999200819095620.
  • Roychowdhury S, Luthe A, Keilhoff G, Wolf G, Horn TF. (2002). Oxidative stress in glial cultures: detection by DAF-2 fluorescence used as a tool to measure peroxynitrite rather than nitric oxide. Glia. 38(2):103-114. https://doi.org/10.1002/glia.10024.
  • Santo-Domingo J, Demaurex N. (2010). Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta. 1797(6-7):907-912. https://doi.org/10.1016/j.bbabio.2010.01.005.
  • Scheltens, P, De Strooper B, Kivipelto M, et al. (2021). Alzheimer's disease. Lancet 397(10284):1577.1590. https://doi.org/10.1016/S0140-6736(20)32205-4.
  • Sciacca MF, Kotler SA, Brender JR, Chen J, Lee DK, Ramamoorthy A. (2012). Two-step mechanism of membrane disruption by Ab through membrane fragmentation and pore formation. Biophys J. 103(4):702 710. https://doi.org/10.1016/j.bpj.2012.06.045.
  • Simpson DSA, Oliver PL. (2020). ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants (Basel). 9(8):743. https://doi.org/10.3390/antiox9080743.
  • Singh BK, Tripathi M, Pandey PK, Kakkar P. (2011). Alteration in mitochondrial thiol enhances calcium ion dependent membrane permeability transition and dysfunction in vitro: a cross-talk between mtThiol, Ca(2+), and ROS. Mol Cell Biochem. 357(1-2):373-385. https://doi.org/10.1007/s11010-011-0908-0.
  • Staerck C, Gastebois A, Vandeputte P, et al. (2017) Microbial antioxidant defense enzymes. Microb Pathog. 110:56-65. https://doi.org/10.1016/j.micpath.2017.06.015.
  • Sun, Q, Jia N, Li X, Yang J, Chen G. (2019). Grape seed proanthocyanidins ameliorate neuronal oxidative damage by inhibiting GSK-3b-dependent mitochondrial permeability transition pore opening in an experimental model of sporadic Alzheimer's disease. Aging 11(12), 4107.4124. https://doi.org/10.18632/aging.102041.
  • Uguz AC, Oz A, Nazıroğlu M. (2016). Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells. J Recept Signal Transduct Res. 36(4):395-401. https://doi.org/10.3109/10799893.2015.1108337.
  • Uğuz AC, Oz A, Yilmaz B, Altunbas S, Celik O. (2015). Melatonin attenuates apoptosis and mitochondrial depolarization levels in hypoxic conditions of SH-SY5Y neuronal cells induced by cobalt chloride (CoCl 2). Turkish J Biol. 39(6):896-903.
  • Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH. (2004). Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol. 136(4):3892-904. https://doi.org/10.1104/pp.104.042754.
  • Wang, Q, Ge X, Zhang J, Chen L. (2020). Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis. Aging. 12(23): 23974–23995. https://doi.org/10.18632/aging.104079.
  • Yazgan Y, Naziroglu M (2017). Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17beta-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol. 54(10):7620–7638. https://doi.org/10.1007/s12035-016-0232-5.
  • Yildizhan K, Çinar R, Naziroğlu M. (2022). The involvement of TRPM2 on the MPP+-induced oxidative neurotoxicity and apoptosis in hippocampal neurons from neonatal mice: protective role of resveratrol. Neurol Res. 1-9. https://doi.org/10.1080/01616412.2022.2027644.
  • Yıldızhan K, Nazıroğlu M. (2020). Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol Neurobiol. 57(8):3508-3525. https://doi.org/10.1007/s12035-020-01974-7.
  • Zhang Q, Li J, Liu C, et al F. (2015). Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience. 305:169-82. https://doi.org/10.1016/j.neuroscience.2015.08.002.
  • Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. (2017). Regulation of microglial activation in stroke. Acta Pharmacol Sin. 38(4):445-458. https://doi.org/10.1038/aps.2016.162.
There are 51 citations in total.

Details

Primary Language English
Subjects Neurosciences, Medical and Biological Physics
Journal Section Original Articles
Authors

Ramazan Çınar This is me

Publication Date July 24, 2022
Published in Issue Year 2022 Volume: 14 Issue: 1

Cite

APA Çınar, R. (2022). Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model. Journal of Cellular Neuroscience and Oxidative Stress, 14(1), 1063-1073. https://doi.org/10.37212/jcnos.1147935
AMA Çınar R. Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model. J Cell Neurosci Oxid Stress. July 2022;14(1):1063-1073. doi:10.37212/jcnos.1147935
Chicago Çınar, Ramazan. “Depletion of Glutathione Induced Apoptosis and Oxidative Stress via the Activation of TRPM2 Channels in the Microglia Cells With Alzheimer’ Disease Model”. Journal of Cellular Neuroscience and Oxidative Stress 14, no. 1 (July 2022): 1063-73. https://doi.org/10.37212/jcnos.1147935.
EndNote Çınar R (July 1, 2022) Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model. Journal of Cellular Neuroscience and Oxidative Stress 14 1 1063–1073.
IEEE R. Çınar, “Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model”, J Cell Neurosci Oxid Stress, vol. 14, no. 1, pp. 1063–1073, 2022, doi: 10.37212/jcnos.1147935.
ISNAD Çınar, Ramazan. “Depletion of Glutathione Induced Apoptosis and Oxidative Stress via the Activation of TRPM2 Channels in the Microglia Cells With Alzheimer’ Disease Model”. Journal of Cellular Neuroscience and Oxidative Stress 14/1 (July 2022), 1063-1073. https://doi.org/10.37212/jcnos.1147935.
JAMA Çınar R. Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model. J Cell Neurosci Oxid Stress. 2022;14:1063–1073.
MLA Çınar, Ramazan. “Depletion of Glutathione Induced Apoptosis and Oxidative Stress via the Activation of TRPM2 Channels in the Microglia Cells With Alzheimer’ Disease Model”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 14, no. 1, 2022, pp. 1063-7, doi:10.37212/jcnos.1147935.
Vancouver Çınar R. Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model. J Cell Neurosci Oxid Stress. 2022;14(1):1063-7.