Research Article
BibTex RIS Cite

Comparing the Psychophysical Capabilities on Fingertip and Wrist using Method of Adjustment

Year 2025, Volume: 5 Issue: 1, 1 - 8
https://doi.org/10.57020/ject.1522842

Abstract

Haptic technology, which refers to creating the sense of touch artificially, offers a crucial source of communication between humans and computers or machines. While conventional haptic devices are designed to render vibrotactile information on the fingertip, recent trends in the field expand the tactile communication to other body locations, like the wrist. Even though the literature has many successful applications showing the validity of such haptic applications, there is no study comparing the user perception for meaningful virtual or teleoperated task scenarios due to the lack of calibration methods between alternative body locations. In this paper, we attempt to compare the perceived intensities at the fingertip and the wrist through psychophysical experiments and to answer: (i) Is there a perpetual difference between the haptic stimuli on the wrist compared to the fingertip? (ii) Is possible to form a reasonable, linear relationship (or a pattern) between the stimuli rendered at the fingertip and the wrist? (iii) If so, do different users require different relationships that would need to be obtained through calibration? We designed a user study with 13 healthy participants, receiving three levels of haptic stimuli at their fingertips while adjusting the intensities of the stimuli rendered at their wrist using the method of adjustments. Our results indicate that there is a linear pattern between the vibrotactile stimuli rendered at the fingertip and the wrist, and each participant exhibits a different pattern. Our results can be used to equalize the perceived intensities of different forms of tactile stimuli for future research investigating the perceived performance under different haptic scenarios.

Ethical Statement

We have the ethics approval for the user study experiment

Supporting Institution

TUBİTAK project 2232

References

  • Kaliberda, M., Lytvynenko, L., & Pogarsky, S. (2017). Method of singular integral equations in diffraction by semi-infinite grating: $ H $-polarization case. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4496-4509..
  • Khosravi, H., Etemad, K., & Samavati, F. F. (2022). Mass simulation in VR using vibrotactile feedback and a co-located physically-based virtual hand. Computers & Graphics, 102, 120-132.
  • Adenekan, R. A., Reyes, A. G., Yoshida, K. T., Kodali, S., Okamura, A. M., & Nunez, C. M. (2024). A comparative analysis of smartphone and standard tools for touch perception assessment across multiple body sites. IEEE Transactions on Haptics.
  • Kim, J. I., Jo, G., Koo, J. H., Kim, D. J., Kim, Y. M., & Yang, T. H. (2022). Development of a Thin Vibrotactile Actuator Based on the Electrostatic Force Mechanism for Large Haptic Touch Interfaces. Mobile Information Systems, 2022(1), 8331923.
  • Orozco, M., Silva, J., El Saddik, A., & Petriu, E. (2012). The role of haptics in games. Haptics rendering and applications, 217-234.
  • Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., & Prattichizzo, D. (2017). Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE transactions on haptics, 10(4), 580-600.
  • Gibson, J. J. (1962). Observations on active touch. Psychological review, 69(6), 477.
  • Corniani, G., & Saal, H. P. (2020). Tactile innervation densities across the whole body. Journal of Neurophysiology, 124(4), 1229-1240.
  • Culbertson, H., Schorr, S. B., & Okamura, A. M. (2018). Haptics: The present and future of artificial touch sensation. Annual review of control, robotics, and autonomous systems, 1(1), 385-409.
  • Demolder, C., Molina, A., Hammond III, F. L., & Yeo, W. H. (2021). Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosensors and Bioelectronics, 190, 113443.
  • Wang, Y., Millet, B., & Smith, J. L. (2016). Designing wearable vibrotactile notifications for information communication. International Journal of Human-Computer Studies, 89, 24-34.
  • Wang, F., Zhang, W., & Luo, W. (2018). An empirical evaluation on vibrotactile feedback for wristband system. Mobile Information Systems, 2018(1), 4878014.
  • Hong, J., Pradhan, A., Froehlich, J. E., & Findlater, L. (2017, October). Evaluating wrist-based haptic feedback for non-visual target finding and path tracing on a 2d surface. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 210-219).
  • Aggravi, M., Salvietti, G., & Prattichizzo, D. (2016, August). Haptic wrist guidance using vibrations for human-robot teams. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 113-118). IEEE.
  • Hong, J., Stearns, L., Froehlich, J., Ross, D., & Findlater, L. (2016, October). Evaluating angular accuracy of wrist-based haptic directional guidance for hand movement. In Graphics Interface (pp. 195-200).
  • Hachisu, T., Bourreau, B., & Suzuki, K. (2019, May). Enhancedtouchx: Smart bracelets for augmenting interpersonal touch interactions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
  • Suzuki, K., Hachisu, T., & Iida, K. (2016, May). Enhancedtouch: A smart bracelet for enhancing human-human physical touch. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 1282-1293).
  • Huisman, G., Frederiks, A. D., Van Erp, J. B., & Heylen, D. K. (2016). Simulating affective touch: Using a vibrotactile array to generate pleasant stroking sensations. In Haptics: Perception, Devices, Control, and Applications: 10th International Conference, EuroHaptics 2016, London, UK, July 4-7, 2016, Proceedings, Part II 10 (pp. 240-250). Springer International Publishing.
  • T. Azevedo, R., Bennett, N., Bilicki, A., Hooper, J., Markopoulou, F., & Tsakiris, M. (2017). The calming effect of a new wearable device during the anticipation of public speech. Scientific reports, 7(1), 2285.
  • Sarac, M., Huh, T. M., Choi, H., Cutkosky, M. R., Di Luca, M., & Okamura, A. M. (2022). Perceived intensities of normal and shear skin stimuli using a wearable haptic bracelet. IEEE Robotics and Automation Letters, 7(3), 6099-6106.
  • Adeyemi, A., Sen, U., Ercan, S. M., & Sarac, M. (2024). Hand Dominance and Congruence for Wrist-worn Haptics using Custom Voice-Coil Actuation. IEEE Robotics and Automation Letters.
  • Ercan, S. M., Adeyemi, A., & Sarac, M. (2024). Effects of rendering discrete force feedback on the wrist during virtual exploration. In Proceedings of Eurohaptics 2024.
  • Emami, M., Bayat, A., Tafazolli, R., & Quddus, A. (2024). A Survey on Haptics: Communication, Sensing and Feedback. IEEE Communications Surveys & Tutorials.
  • Tan, H. Z. (1997, November). Identification of sphere size using the PHANToM™: Towards a set of building blocks for rendering haptic environment. In ASME International Mechanical Engineering Congress and Exposition (Vol. 18244, pp. 197-203). American Society of Mechanical Engineers.
  • Gescheider, G. A. (2013). Psychophysics: the fundamentals. Psychology Press.
  • Jones, L. A., & Tan, H. Z. (2012). Application of psychophysical techniques to haptic research. IEEE transactions on haptics, 6(3), 268-284.
  • Lawless, H. T. (2013). Quantitative sensory analysis: Psychophysics, models and intelligent design. John Wiley & Sons..
  • Ross, H. E. (1997). On the possible relations between discriminability and apparent magnitude. British Journal of Mathematical and Statistical Psychology, 50(2), 187-203.
  • Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and Brain Sciences, 12(2), 251-267.
  • Ehrenstein, W. H., & Ehrenstein, A. (1999). Psychophysical methods. In Modern techniques in neuroscience research (pp. 1211-1241). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Simpson, W. A. (1988). The method of constant stimuli is efficient. Perception & psychophysics, 44, 433-436.
  • Stevens, S. S. (1958). Problems and methods of psychophysics. Psychological bulletin, 55(4), 177.
  • Pelli, D. G., & Farell, B. (1995). Psychophysical methods. Handbook of optics, 1, 29-1.
  • Rollman, G. B., & Nachmias, J. (1972). Simultaneous detection and recognition of chromatic flashes. Perception & Psychophysics, 12(3), 309-314.
  • Moller, H., & Pedersen, C. S. (2004). Hearing at low and infrasonic frequencies. Noise and health, 6(23), 37-57.
  • Stevens, J. C., & Stevens, S. S. (1963). Brightness function: Effects of adaptation. JOSA, 53(3), 375-385.
  • Iheanacho, F., & Vellipuram, A. R. (2019). Physiology, mechanoreceptors.
Year 2025, Volume: 5 Issue: 1, 1 - 8
https://doi.org/10.57020/ject.1522842

Abstract

References

  • Kaliberda, M., Lytvynenko, L., & Pogarsky, S. (2017). Method of singular integral equations in diffraction by semi-infinite grating: $ H $-polarization case. Turkish Journal of Electrical Engineering and Computer Sciences, 25(6), 4496-4509..
  • Khosravi, H., Etemad, K., & Samavati, F. F. (2022). Mass simulation in VR using vibrotactile feedback and a co-located physically-based virtual hand. Computers & Graphics, 102, 120-132.
  • Adenekan, R. A., Reyes, A. G., Yoshida, K. T., Kodali, S., Okamura, A. M., & Nunez, C. M. (2024). A comparative analysis of smartphone and standard tools for touch perception assessment across multiple body sites. IEEE Transactions on Haptics.
  • Kim, J. I., Jo, G., Koo, J. H., Kim, D. J., Kim, Y. M., & Yang, T. H. (2022). Development of a Thin Vibrotactile Actuator Based on the Electrostatic Force Mechanism for Large Haptic Touch Interfaces. Mobile Information Systems, 2022(1), 8331923.
  • Orozco, M., Silva, J., El Saddik, A., & Petriu, E. (2012). The role of haptics in games. Haptics rendering and applications, 217-234.
  • Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., & Prattichizzo, D. (2017). Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE transactions on haptics, 10(4), 580-600.
  • Gibson, J. J. (1962). Observations on active touch. Psychological review, 69(6), 477.
  • Corniani, G., & Saal, H. P. (2020). Tactile innervation densities across the whole body. Journal of Neurophysiology, 124(4), 1229-1240.
  • Culbertson, H., Schorr, S. B., & Okamura, A. M. (2018). Haptics: The present and future of artificial touch sensation. Annual review of control, robotics, and autonomous systems, 1(1), 385-409.
  • Demolder, C., Molina, A., Hammond III, F. L., & Yeo, W. H. (2021). Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosensors and Bioelectronics, 190, 113443.
  • Wang, Y., Millet, B., & Smith, J. L. (2016). Designing wearable vibrotactile notifications for information communication. International Journal of Human-Computer Studies, 89, 24-34.
  • Wang, F., Zhang, W., & Luo, W. (2018). An empirical evaluation on vibrotactile feedback for wristband system. Mobile Information Systems, 2018(1), 4878014.
  • Hong, J., Pradhan, A., Froehlich, J. E., & Findlater, L. (2017, October). Evaluating wrist-based haptic feedback for non-visual target finding and path tracing on a 2d surface. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 210-219).
  • Aggravi, M., Salvietti, G., & Prattichizzo, D. (2016, August). Haptic wrist guidance using vibrations for human-robot teams. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (pp. 113-118). IEEE.
  • Hong, J., Stearns, L., Froehlich, J., Ross, D., & Findlater, L. (2016, October). Evaluating angular accuracy of wrist-based haptic directional guidance for hand movement. In Graphics Interface (pp. 195-200).
  • Hachisu, T., Bourreau, B., & Suzuki, K. (2019, May). Enhancedtouchx: Smart bracelets for augmenting interpersonal touch interactions. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
  • Suzuki, K., Hachisu, T., & Iida, K. (2016, May). Enhancedtouch: A smart bracelet for enhancing human-human physical touch. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 1282-1293).
  • Huisman, G., Frederiks, A. D., Van Erp, J. B., & Heylen, D. K. (2016). Simulating affective touch: Using a vibrotactile array to generate pleasant stroking sensations. In Haptics: Perception, Devices, Control, and Applications: 10th International Conference, EuroHaptics 2016, London, UK, July 4-7, 2016, Proceedings, Part II 10 (pp. 240-250). Springer International Publishing.
  • T. Azevedo, R., Bennett, N., Bilicki, A., Hooper, J., Markopoulou, F., & Tsakiris, M. (2017). The calming effect of a new wearable device during the anticipation of public speech. Scientific reports, 7(1), 2285.
  • Sarac, M., Huh, T. M., Choi, H., Cutkosky, M. R., Di Luca, M., & Okamura, A. M. (2022). Perceived intensities of normal and shear skin stimuli using a wearable haptic bracelet. IEEE Robotics and Automation Letters, 7(3), 6099-6106.
  • Adeyemi, A., Sen, U., Ercan, S. M., & Sarac, M. (2024). Hand Dominance and Congruence for Wrist-worn Haptics using Custom Voice-Coil Actuation. IEEE Robotics and Automation Letters.
  • Ercan, S. M., Adeyemi, A., & Sarac, M. (2024). Effects of rendering discrete force feedback on the wrist during virtual exploration. In Proceedings of Eurohaptics 2024.
  • Emami, M., Bayat, A., Tafazolli, R., & Quddus, A. (2024). A Survey on Haptics: Communication, Sensing and Feedback. IEEE Communications Surveys & Tutorials.
  • Tan, H. Z. (1997, November). Identification of sphere size using the PHANToM™: Towards a set of building blocks for rendering haptic environment. In ASME International Mechanical Engineering Congress and Exposition (Vol. 18244, pp. 197-203). American Society of Mechanical Engineers.
  • Gescheider, G. A. (2013). Psychophysics: the fundamentals. Psychology Press.
  • Jones, L. A., & Tan, H. Z. (2012). Application of psychophysical techniques to haptic research. IEEE transactions on haptics, 6(3), 268-284.
  • Lawless, H. T. (2013). Quantitative sensory analysis: Psychophysics, models and intelligent design. John Wiley & Sons..
  • Ross, H. E. (1997). On the possible relations between discriminability and apparent magnitude. British Journal of Mathematical and Statistical Psychology, 50(2), 187-203.
  • Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and Brain Sciences, 12(2), 251-267.
  • Ehrenstein, W. H., & Ehrenstein, A. (1999). Psychophysical methods. In Modern techniques in neuroscience research (pp. 1211-1241). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Simpson, W. A. (1988). The method of constant stimuli is efficient. Perception & psychophysics, 44, 433-436.
  • Stevens, S. S. (1958). Problems and methods of psychophysics. Psychological bulletin, 55(4), 177.
  • Pelli, D. G., & Farell, B. (1995). Psychophysical methods. Handbook of optics, 1, 29-1.
  • Rollman, G. B., & Nachmias, J. (1972). Simultaneous detection and recognition of chromatic flashes. Perception & Psychophysics, 12(3), 309-314.
  • Moller, H., & Pedersen, C. S. (2004). Hearing at low and infrasonic frequencies. Noise and health, 6(23), 37-57.
  • Stevens, J. C., & Stevens, S. S. (1963). Brightness function: Effects of adaptation. JOSA, 53(3), 375-385.
  • Iheanacho, F., & Vellipuram, A. R. (2019). Physiology, mechanoreceptors.
There are 37 citations in total.

Details

Primary Language English
Subjects Information Systems User Experience Design and Development, Electronic Sensors
Journal Section Research Articles
Authors

Ayoade Adeyemi 0009-0009-8162-394X

Mine Sarac 0000-0002-2814-7587

Publication Date
Submission Date July 30, 2024
Acceptance Date October 14, 2024
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Adeyemi, A., & Sarac, M. (n.d.). Comparing the Psychophysical Capabilities on Fingertip and Wrist using Method of Adjustment. Journal of Emerging Computer Technologies, 5(1), 1-8. https://doi.org/10.57020/ject.1522842
Journal of Emerging Computer Technologies
is indexed and abstracted by
Index Copernicus, ROAD, Academia.edu, Google Scholar, Asos Index, Academic Resource Index (Researchbib), OpenAIRE, IAD, Cosmos, EuroPub, Academindex

Publisher
Izmir Academy Association