Research Article
BibTex RIS Cite

Enhancing the Antibacterial Effect by Adding MWCNT and ZrO2 Nanomaterials to Extracts Obtained from Different Parts of Persea americana Fruit

Year 2023, Volume: 5 Issue: 3, 193 - 201, 30.12.2023
https://doi.org/10.53472/jenas.1340894

Abstract

In this study, Avocado (Persea americana) which has achieved the eating ripeness was used. Extracts of dissimilar dehydrated parts of exocarp, pericarp and seed ( avocado fruits) with ethanol were acquired. MWCNT and ZrO2 nanomaterials were added to these extracts obtained from different parts of avocado. Then, antibacterial activity of these extracts was tested by disk diffusion test using Staphylococcus aureus and Bacillus subtilis (gram+), Escherichia coli (gram-) bacteria. Antibacterial activity was evaluated by measuring the zone diameter formed after 24 hours of incubation. MWCNT and ZrO2 indicated a synergistic effect with avocado fruit extracts and significantly increased the antibacterial activity of extracts of dissimilar parts of avocado (P<0.05)

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Adebayo, A., E., Oke, A. M., Lateef, A., Oyatokun, A. A., Abisoye, O. D., Adiji, I. P., ... & Abbas, S. H. (2019). Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnology for Environmental Engineering, 4, 1-15. doi.org/10.1007/s41204-019-0060-8.
  • Amado, D. A. V., Helmann, G. A. B., Detoni, A. M., Carvalho, S. L. C. D., Aguiar, C. M. D., Martin, C. A., ... & Cottica, S. M. (2019). Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Brazilian Journal of Food Technology, 22.
  • Amyes, S. G. B., & Gemmell, C. G. (1992). Antibiotic resistance in bacteria. Journal of Medical Microbiology, 36(1), 4-29.
  • Arsawang, U., Saengsawang, O., Rungrotmongkol, T., Sornmee, P., Wittayanarakul, K., Remsungnen, T., & Hannongbua, S. (2011). How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system?. Journal of Molecular Graphics and Modelling, 29(5), 591-596. doi.org/10.1016/j.jmgm.2010.11.002.
  • Aslan, S., Loebick, C. Z., Kang, S., Elimelech, M., Pfefferle, L. D., & Van Tassel, P. R. (2010). Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale, 2(9), 1789-1794.doi.10.1039/C0NR00329H.
  • Balaji, S., Mandal, B. K., Ranjan, S., Dasgupta, N., & Chidambaram, R. (2017). Nano-zirconia–evaluation of its antioxidant and anticancer activity. Journal of Photochemistry and Photobiology B: Biology, 170, 125-133. doi.org/10.1016/j.jphotobiol.2017.04.004.
  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current opinion in chemical biology, 9(6), 674-679. doi.org/10.1016/j.cbpa.2005.10.005.
  • Botha, N. L., Cloete, K. J., Matinise, N., David, O. M., Dube, A., & Maaza, M. (2023). Synthesis, Characterization, Cytotoxicity, and Antibacterial Studies of Persea americana Mill.(Avocado) Seed Husk Mediated Hydronium Jarosite Nanoparticles. Applied Sciences, 13(15), 8963.
  • Bouic, P. J. (2002). Sterols and sterolins: new drugs for the immune system?. Drug discovery today, 7(14), 775-778. doi.org/10.1016/S1359-6446(02)02343-7.
  • Calderón-Oliver, M., Escalona-Buendía, H. B., Medina-Campos, O. N., Pedraza-Chaverri, J., Pedroza-Islas, R., & Ponce-Alquicira, E. (2016). Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT-Food Science and Technology, 65, 46-52.
  • Chen, H; Morrell, P. L; Ashworth, V. E. T. M; de la Cruz, M; Clegg, M. T (2008). "Tracing the Geographic Origins of Major Avocado Cultivars". Journal of Heredity. 100 (1): 56–65. doi:10.1093/jhered/esn068. PMID 18779226.
  • Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(6797), 762-767.
  • Conte, A., Speranza, B., Sinigaglia, M., & Del Nobile, M. A. (2007). Effect of lemon extract on foodborne microorganisms. Journal of food protection, 70(8), 1896-1900.
  • Dağlıoğlu, Y., & Öztürk, B. Y. (2016b). Desmodesmus multivariabilis’ in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi. Biyolojik Çeşitlilik ve Koruma, 9(3), 204-209.
  • Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 611-621. doi.org/10.1007/s12210-019-00822-8
  • Dağlıoğlu, Y., Çelebi, S. M., & Önalan, Ş. (2016a). Determination of acute toxic effects of poly (Vinylferrocenium) supported palladium nanoparticle (Pd/PVF+) on Artemia salina. Pakistan Journal of Zoology, 48(1), 187-193.
  • Dağlıoğlu, Y., Kabakcı, D., Akdeniz, G., & Çelebi, M. S. (2016). Determining the acute toxic effects of poly (vinylferrocenium) supported platinum nanoparticle (pt/pvf+ nps) on Apis mellifera. Mugla journal of science and technology, 2(2), 1-8.
  • Dağlioğlu, Y., Açikgöz, M. A., Özcan, M. M., & Kara, Ş. M. (2022). Impact of application of alumina oxide nanoparticles on callus induction, pigment content, cell damage and antioxidant enzyme activities in Ocimum basilicum. Journal of International Environmental Application and Science, 17(1), 22-33.
  • Dağlıoğlu, Y., Yavuz, M. C., Ertürk, O., Ameen, F., & Khatami, M. (2023). Investigation of cell damage of periodontopathic bacteria exposed to silver, zirconium oxide, and silicon oxide nanoparticles as antibacterial agents. Micro & Nano Letters, 18(9-12), e12178. doi.org/10.1049/mna2.12178
  • Daiuto, É. R., Vieites, R. L., Tremocoldi, M. A., & Vileigas, D. F. (2010). Estabilidade físico-química de um produto de abacate acondicionado em diferentes embalagens e conservado pelo frio. Alimentos e Nutrição, 97-105.
  • Das, M. R., Sarma, R. K., Saikia, R., Kale, V. S., Shelke, M. V., & Sengupta, P. (2011). Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 83(1), 16-22. doi.org/10.1016/j.colsurfb.2010.10.033.
  • Duarte, P. F., Chaves, M. A., Borges, C. D., & Mendonça, C. R. B. (2016). Avocado: characteristics, health benefits and uses. Ciência rural, 46, 747-754.
  • Grant, W. C. (1960). Influence of avocados on serum cholesterol. Proceedings of the Society for Experimental Biology and Medicine, 104(1), 45-47.
  • Hajipour, M. J., Fromm, K. M., & Ashkarran, A. K. (2012). De aberasturi DJ; Larramendi IR; Rojo T,; Serpooshan V. Parak WJ and Mahmoudi M. Antibacterial properties of nanoparticles. trends in Biotechnology, 30(10), 499-511. doi.org/10.1016/j.tibtech.2012.06.004.
  • Holopainen, M., Jahodar, L., Seppänen-Laakso, T., Laakso, I., & Kauppinen, V. (1988). Antimicrobial activity of some Finnish Ericaceous plants. Acta Pharmaceutica Fennica, 97(4), 197-202.
  • Hu, C., Sun, J., Long, C., Wu, L., Zhou, C., & Zhang, X. (2019). Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnology Reviews, 8(1), 396-404. doi.org/10.1515/ntrev-2019-0035.
  • Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 156(2), 128-145. doi.org/10.1016/j.jconrel.2011.07.002.
  • Idris, S., Ndukwe, G., & Gimba, C. (2009). Preliminary phytochemical screening and antimicrobial activity of seed extracts of Persea americana (avocado pear). Bayero Journal of Pure and Applied Sciences, 2(1), 173-176.
  • Jacob, B, Biale, J. B, Young, R. E. (1971). The avocado pear. In: Hulme AC, ed., The Biochemistry of Fruits and Their Products. London, Academic Press, pp. 3–22.
  • Kang, Y., Liu, Y. C., Wang, Q., Shen, J. W., Wu, T., & Guan, W. J. (2009). On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials, 30(14), 2807-2815. doi.org/10.1016/j.biomaterials.2009.01.024.
  • la Rosa-García, D., Susana, C., Martínez-Torres, P., Gómez-Cornelio, S., Corral-Aguado, M. A., Quintana, P., & Gómez-Ortíz, N. M. (2018). Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. Journal of Nanomaterials, 2018. doi.org/10.1155/2018/3498527.
  • Landon, A. J. (2009). Domestication and Significance of Persea americana, the Avocado, in Mesoamerica.
  • Le, K. H., Nguyen, M. D. B., Dai Tran, L., Thi, H. P. N., Van Tran, C., Van Tran, K., ... & La, D. D. (2021). A novel antimicrobial ZnO nanoparticles-added polysaccharide edible coating for the preservation of postharvest avocado under ambient conditions. Progress in Organic Coatings, 158, 106339.
  • Lidebjer, C., Leanderson, P., Ernerudh, J., & Jonasson, L. (2007). Low plasma levels of oxygenated carotenoids in patients with coronary artery disease. Nutrition, Metabolism and Cardiovascular Diseases, 17(6), 448-456. doi.org/10.1016/j.numecd.2006.02.006.
  • Mftah, A., Alhassan, F. H., Al-Qubaisi, M. S., El Zowalaty, M. E., Webster, T. J., Sh-Eldin, M., ... & Rashid, S. S. (2015). Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles. International journal of nanomedicine, 10, 765. doi: 10.2147/IJN.S66058.
  • Mindell, E., 2003. Mucize Bitkiler. Prestij yayınları, 322 s.
  • Mohan, R., Shanmugharaj, A. M., & Sung Hun, R. (2011). An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 96(1), 119-126. doi.org/10.1002/jbm.b.31747.
  • MubarakAli, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85(2), 360-365. doi.org/10.1016/j.colsurfb.2011.03.009.
  • Murugan, E., & Vimala, G. (2011). Effective functionalization of multiwalled carbon nanotube with amphiphilic poly (propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. Journal of colloid and interface science, 357(2), 354-365. doi.org/10.1016/j.jcis.2011.02.009.
  • Owolabi, M. A., Coker, H. A. B., & Jaja, S. I. (2010). Bioactivity of the phytoconstituents of the leaves of Persea americana. Journal of Medicinal Plants Research, 4(12), 1130-1135. doi.org/10.5897/JMPR09.429.
  • Pantarotto, D., Partidos, C. D., Hoebeke, J., Brown, F., Kramer, E. D., Briand, J. P., ... & Bianco, A. (2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry & biology, 10(10), 961-966. doi.org/10.1016/j.chembiol.2003.09.011.
  • RajeshKumar, S., & Rinitha, G. (2018). Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano, 3, 18-27.
  • Raymond Chia, T. W., & Dykes, G. A. (2010). Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharmaceutical biology, 48(7), 753-756. doi.org/10.3109/13880200903273922.
  • Rodriguez-Carpena, J. G., Morcuende, D., Andrade, M. J., Kylli, P., Estevez, M. (2011). Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 59, 5625–5635.
  • Salinas-Salazar, C., Hernández-Brenes, C., Rodríguez-Sánchez, D. G., Castillo, E. C., Navarro-Silva, J. M., Pacheco, A. (2017). Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes. J. Food Sci. 82, 134–144
  • Saridewi, N., Adinda, A. R., & Nurbayti, S. (2022). Characterization and Antibacterial Activity Test of Green Synthetic ZnO Nanoparticles Using Avocado (Persea americana) Seed Extract. Jurnal Kimia Sains Dan Aplikasi, 25(3), 116-122.
  • Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M., ... & Colvin, V. L. (2006). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology letters, 161(2), 135-142. doi.org/10.1016/j.toxlet.2005.08.011.
  • Shaw, L., Nath, O., Fletcher, S., Henry, R., Mitter, N., & Hayward, A. (2020). Avocado transcriptomic resources.
  • Sigwadi, R., Dhlamini, M., Mokrani, T., & Nemavhola, F. (2019). Preparation of a high surface area zirconium oxide for fuel cell application. International Journal of Mechanical and Materials Engineering, 14(1), 1-11. Doi.org/10.1186/s40712-019-0102-9.
  • Sivanathan, S., & Adikaram, N. K. B. (1989). Biological activity of four antifungal compounds in immature avocado. Journal of Phytopathology, 125(2), 97-109.
  • Tabeshpour, J., Razavi, B. M., & Hosseinzadeh, H. (2017). Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review. Phytotherapy research, 31(6), 819-837. doi.org/10.1002/ptr.5805.
  • Vinha, A. F., Soares, M. O., Herdeiro, T., & Machado, M. (2012). Chemical composition and antioxidant activity of Portuguese diospyrus kaki fruit by geographical origins. Journal Agricultural Science, 4(2), 281-289. http://dx.doi.org/10.5539/jas.v4n2p281.
  • WHO, 2022 www.who.int/news/item/15-04-2021-global-shortage-of-innovative-antibiotics-fuels-emergence-and-spread-of-drug-resistance
  • Young, R. E., & Biale, J. B. (1967). Phosphorylation in avocado fruit slices in relation to the respiratory climacteric. Plant Physiology, 42(10), 1357-1362.
  • Yuan, W., Jiang, G., Che, J., Qi, X., Xu, R., Chang, M. W., ... & Chan-Park, M. B. (2008). Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly (amidoamine) and their antimicrobial effects. The Journal of Physical Chemistry C, 112(48), 18754-18759. doi.org/10.1021/jp807133j
  • Zhang, F. J., & Oh, W. C. (2010). Characterization and photonic effect of novel Ag-CNT/TiO 2 composites and their bactericidal activities. Bulletin of the Korean Chemical Society, 31(7), 1981-1987. Doi. 10.5012/bkcs.2010.31.7.1981.
  • Zhou, J., & Qi, X. (2011). Multi‐walled carbon nanotubes/epilson‐polylysine nanocomposite with enhanced antibacterial activity. Letters in applied microbiology, 52(1), 76-83. doi.org/10.1111/j.1472-765X.2010.02969.x.

Avokado Meyve Özlerinin Antibakteriyel Etkisinin MWCNT ve ZrO2 Nanomalzemeler Eklenerek Artırılması

Year 2023, Volume: 5 Issue: 3, 193 - 201, 30.12.2023
https://doi.org/10.53472/jenas.1340894

Abstract

Bu çalışmada yeme olgunluğuna ulaşmış Avokado (Persea americana) meyvesi kullanılmıştır. Etanol ile ekzokarp, perikarp ve tohumun (avokado meyveleri) farklı kurutulmuş kısımlarının özleri elde edildi. Avokadonun farklı kısımlarından elde edilen bu ekstraktlara MWCNT ve ZrO2 nanomateryalleri eklenmiştir. Daha sonra bu ekstraktların antibakteriyel aktivitesi, Staphylococcus aureus ve Bacillus subtilis (gram+), Escherichia coli (gram-) bakterileri kullanılarak disk difüzyon testi ile test edildi. Antibakteriyel aktivite, 24 saatlik inkübasyondan sonra oluşan zon çapı ölçülerek değerlendirildi. MWCNT ve ZrO2, avokado meyve özleri ile sinerjistik bir etki göstermiştir ve avokadonun farklı kısımlarından elde edilen özlerinin antibakteriyel aktivitesini önemli ölçüde artırmıştır (P<0.05).

Project Number

-

References

  • Adebayo, A., E., Oke, A. M., Lateef, A., Oyatokun, A. A., Abisoye, O. D., Adiji, I. P., ... & Abbas, S. H. (2019). Biosynthesis of silver, gold and silver–gold alloy nanoparticles using Persea americana fruit peel aqueous extract for their biomedical properties. Nanotechnology for Environmental Engineering, 4, 1-15. doi.org/10.1007/s41204-019-0060-8.
  • Amado, D. A. V., Helmann, G. A. B., Detoni, A. M., Carvalho, S. L. C. D., Aguiar, C. M. D., Martin, C. A., ... & Cottica, S. M. (2019). Antioxidant and antibacterial activity and preliminary toxicity analysis of four varieties of avocado (Persea americana Mill.). Brazilian Journal of Food Technology, 22.
  • Amyes, S. G. B., & Gemmell, C. G. (1992). Antibiotic resistance in bacteria. Journal of Medical Microbiology, 36(1), 4-29.
  • Arsawang, U., Saengsawang, O., Rungrotmongkol, T., Sornmee, P., Wittayanarakul, K., Remsungnen, T., & Hannongbua, S. (2011). How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system?. Journal of Molecular Graphics and Modelling, 29(5), 591-596. doi.org/10.1016/j.jmgm.2010.11.002.
  • Aslan, S., Loebick, C. Z., Kang, S., Elimelech, M., Pfefferle, L. D., & Van Tassel, P. R. (2010). Antimicrobial biomaterials based on carbon nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale, 2(9), 1789-1794.doi.10.1039/C0NR00329H.
  • Balaji, S., Mandal, B. K., Ranjan, S., Dasgupta, N., & Chidambaram, R. (2017). Nano-zirconia–evaluation of its antioxidant and anticancer activity. Journal of Photochemistry and Photobiology B: Biology, 170, 125-133. doi.org/10.1016/j.jphotobiol.2017.04.004.
  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current opinion in chemical biology, 9(6), 674-679. doi.org/10.1016/j.cbpa.2005.10.005.
  • Botha, N. L., Cloete, K. J., Matinise, N., David, O. M., Dube, A., & Maaza, M. (2023). Synthesis, Characterization, Cytotoxicity, and Antibacterial Studies of Persea americana Mill.(Avocado) Seed Husk Mediated Hydronium Jarosite Nanoparticles. Applied Sciences, 13(15), 8963.
  • Bouic, P. J. (2002). Sterols and sterolins: new drugs for the immune system?. Drug discovery today, 7(14), 775-778. doi.org/10.1016/S1359-6446(02)02343-7.
  • Calderón-Oliver, M., Escalona-Buendía, H. B., Medina-Campos, O. N., Pedraza-Chaverri, J., Pedroza-Islas, R., & Ponce-Alquicira, E. (2016). Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT-Food Science and Technology, 65, 46-52.
  • Chen, H; Morrell, P. L; Ashworth, V. E. T. M; de la Cruz, M; Clegg, M. T (2008). "Tracing the Geographic Origins of Major Avocado Cultivars". Journal of Heredity. 100 (1): 56–65. doi:10.1093/jhered/esn068. PMID 18779226.
  • Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406(6797), 762-767.
  • Conte, A., Speranza, B., Sinigaglia, M., & Del Nobile, M. A. (2007). Effect of lemon extract on foodborne microorganisms. Journal of food protection, 70(8), 1896-1900.
  • Dağlıoğlu, Y., & Öztürk, B. Y. (2016b). Desmodesmus multivariabilis’ in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi. Biyolojik Çeşitlilik ve Koruma, 9(3), 204-209.
  • Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 611-621. doi.org/10.1007/s12210-019-00822-8
  • Dağlıoğlu, Y., Çelebi, S. M., & Önalan, Ş. (2016a). Determination of acute toxic effects of poly (Vinylferrocenium) supported palladium nanoparticle (Pd/PVF+) on Artemia salina. Pakistan Journal of Zoology, 48(1), 187-193.
  • Dağlıoğlu, Y., Kabakcı, D., Akdeniz, G., & Çelebi, M. S. (2016). Determining the acute toxic effects of poly (vinylferrocenium) supported platinum nanoparticle (pt/pvf+ nps) on Apis mellifera. Mugla journal of science and technology, 2(2), 1-8.
  • Dağlioğlu, Y., Açikgöz, M. A., Özcan, M. M., & Kara, Ş. M. (2022). Impact of application of alumina oxide nanoparticles on callus induction, pigment content, cell damage and antioxidant enzyme activities in Ocimum basilicum. Journal of International Environmental Application and Science, 17(1), 22-33.
  • Dağlıoğlu, Y., Yavuz, M. C., Ertürk, O., Ameen, F., & Khatami, M. (2023). Investigation of cell damage of periodontopathic bacteria exposed to silver, zirconium oxide, and silicon oxide nanoparticles as antibacterial agents. Micro & Nano Letters, 18(9-12), e12178. doi.org/10.1049/mna2.12178
  • Daiuto, É. R., Vieites, R. L., Tremocoldi, M. A., & Vileigas, D. F. (2010). Estabilidade físico-química de um produto de abacate acondicionado em diferentes embalagens e conservado pelo frio. Alimentos e Nutrição, 97-105.
  • Das, M. R., Sarma, R. K., Saikia, R., Kale, V. S., Shelke, M. V., & Sengupta, P. (2011). Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids and Surfaces B: Biointerfaces, 83(1), 16-22. doi.org/10.1016/j.colsurfb.2010.10.033.
  • Duarte, P. F., Chaves, M. A., Borges, C. D., & Mendonça, C. R. B. (2016). Avocado: characteristics, health benefits and uses. Ciência rural, 46, 747-754.
  • Grant, W. C. (1960). Influence of avocados on serum cholesterol. Proceedings of the Society for Experimental Biology and Medicine, 104(1), 45-47.
  • Hajipour, M. J., Fromm, K. M., & Ashkarran, A. K. (2012). De aberasturi DJ; Larramendi IR; Rojo T,; Serpooshan V. Parak WJ and Mahmoudi M. Antibacterial properties of nanoparticles. trends in Biotechnology, 30(10), 499-511. doi.org/10.1016/j.tibtech.2012.06.004.
  • Holopainen, M., Jahodar, L., Seppänen-Laakso, T., Laakso, I., & Kauppinen, V. (1988). Antimicrobial activity of some Finnish Ericaceous plants. Acta Pharmaceutica Fennica, 97(4), 197-202.
  • Hu, C., Sun, J., Long, C., Wu, L., Zhou, C., & Zhang, X. (2019). Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnology Reviews, 8(1), 396-404. doi.org/10.1515/ntrev-2019-0035.
  • Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 156(2), 128-145. doi.org/10.1016/j.jconrel.2011.07.002.
  • Idris, S., Ndukwe, G., & Gimba, C. (2009). Preliminary phytochemical screening and antimicrobial activity of seed extracts of Persea americana (avocado pear). Bayero Journal of Pure and Applied Sciences, 2(1), 173-176.
  • Jacob, B, Biale, J. B, Young, R. E. (1971). The avocado pear. In: Hulme AC, ed., The Biochemistry of Fruits and Their Products. London, Academic Press, pp. 3–22.
  • Kang, Y., Liu, Y. C., Wang, Q., Shen, J. W., Wu, T., & Guan, W. J. (2009). On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials, 30(14), 2807-2815. doi.org/10.1016/j.biomaterials.2009.01.024.
  • la Rosa-García, D., Susana, C., Martínez-Torres, P., Gómez-Cornelio, S., Corral-Aguado, M. A., Quintana, P., & Gómez-Ortíz, N. M. (2018). Antifungal activity of ZnO and MgO nanomaterials and their mixtures against Colletotrichum gloeosporioides strains from tropical fruit. Journal of Nanomaterials, 2018. doi.org/10.1155/2018/3498527.
  • Landon, A. J. (2009). Domestication and Significance of Persea americana, the Avocado, in Mesoamerica.
  • Le, K. H., Nguyen, M. D. B., Dai Tran, L., Thi, H. P. N., Van Tran, C., Van Tran, K., ... & La, D. D. (2021). A novel antimicrobial ZnO nanoparticles-added polysaccharide edible coating for the preservation of postharvest avocado under ambient conditions. Progress in Organic Coatings, 158, 106339.
  • Lidebjer, C., Leanderson, P., Ernerudh, J., & Jonasson, L. (2007). Low plasma levels of oxygenated carotenoids in patients with coronary artery disease. Nutrition, Metabolism and Cardiovascular Diseases, 17(6), 448-456. doi.org/10.1016/j.numecd.2006.02.006.
  • Mftah, A., Alhassan, F. H., Al-Qubaisi, M. S., El Zowalaty, M. E., Webster, T. J., Sh-Eldin, M., ... & Rashid, S. S. (2015). Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles. International journal of nanomedicine, 10, 765. doi: 10.2147/IJN.S66058.
  • Mindell, E., 2003. Mucize Bitkiler. Prestij yayınları, 322 s.
  • Mohan, R., Shanmugharaj, A. M., & Sung Hun, R. (2011). An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 96(1), 119-126. doi.org/10.1002/jbm.b.31747.
  • MubarakAli, D., Thajuddin, N., Jeganathan, K., & Gunasekaran, M. (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces, 85(2), 360-365. doi.org/10.1016/j.colsurfb.2011.03.009.
  • Murugan, E., & Vimala, G. (2011). Effective functionalization of multiwalled carbon nanotube with amphiphilic poly (propyleneimine) dendrimer carrying silver nanoparticles for better dispersability and antimicrobial activity. Journal of colloid and interface science, 357(2), 354-365. doi.org/10.1016/j.jcis.2011.02.009.
  • Owolabi, M. A., Coker, H. A. B., & Jaja, S. I. (2010). Bioactivity of the phytoconstituents of the leaves of Persea americana. Journal of Medicinal Plants Research, 4(12), 1130-1135. doi.org/10.5897/JMPR09.429.
  • Pantarotto, D., Partidos, C. D., Hoebeke, J., Brown, F., Kramer, E. D., Briand, J. P., ... & Bianco, A. (2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry & biology, 10(10), 961-966. doi.org/10.1016/j.chembiol.2003.09.011.
  • RajeshKumar, S., & Rinitha, G. (2018). Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OpenNano, 3, 18-27.
  • Raymond Chia, T. W., & Dykes, G. A. (2010). Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharmaceutical biology, 48(7), 753-756. doi.org/10.3109/13880200903273922.
  • Rodriguez-Carpena, J. G., Morcuende, D., Andrade, M. J., Kylli, P., Estevez, M. (2011). Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 59, 5625–5635.
  • Salinas-Salazar, C., Hernández-Brenes, C., Rodríguez-Sánchez, D. G., Castillo, E. C., Navarro-Silva, J. M., Pacheco, A. (2017). Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes. J. Food Sci. 82, 134–144
  • Saridewi, N., Adinda, A. R., & Nurbayti, S. (2022). Characterization and Antibacterial Activity Test of Green Synthetic ZnO Nanoparticles Using Avocado (Persea americana) Seed Extract. Jurnal Kimia Sains Dan Aplikasi, 25(3), 116-122.
  • Sayes, C. M., Liang, F., Hudson, J. L., Mendez, J., Guo, W., Beach, J. M., ... & Colvin, V. L. (2006). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology letters, 161(2), 135-142. doi.org/10.1016/j.toxlet.2005.08.011.
  • Shaw, L., Nath, O., Fletcher, S., Henry, R., Mitter, N., & Hayward, A. (2020). Avocado transcriptomic resources.
  • Sigwadi, R., Dhlamini, M., Mokrani, T., & Nemavhola, F. (2019). Preparation of a high surface area zirconium oxide for fuel cell application. International Journal of Mechanical and Materials Engineering, 14(1), 1-11. Doi.org/10.1186/s40712-019-0102-9.
  • Sivanathan, S., & Adikaram, N. K. B. (1989). Biological activity of four antifungal compounds in immature avocado. Journal of Phytopathology, 125(2), 97-109.
  • Tabeshpour, J., Razavi, B. M., & Hosseinzadeh, H. (2017). Effects of avocado (Persea americana) on metabolic syndrome: A comprehensive systematic review. Phytotherapy research, 31(6), 819-837. doi.org/10.1002/ptr.5805.
  • Vinha, A. F., Soares, M. O., Herdeiro, T., & Machado, M. (2012). Chemical composition and antioxidant activity of Portuguese diospyrus kaki fruit by geographical origins. Journal Agricultural Science, 4(2), 281-289. http://dx.doi.org/10.5539/jas.v4n2p281.
  • WHO, 2022 www.who.int/news/item/15-04-2021-global-shortage-of-innovative-antibiotics-fuels-emergence-and-spread-of-drug-resistance
  • Young, R. E., & Biale, J. B. (1967). Phosphorylation in avocado fruit slices in relation to the respiratory climacteric. Plant Physiology, 42(10), 1357-1362.
  • Yuan, W., Jiang, G., Che, J., Qi, X., Xu, R., Chang, M. W., ... & Chan-Park, M. B. (2008). Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly (amidoamine) and their antimicrobial effects. The Journal of Physical Chemistry C, 112(48), 18754-18759. doi.org/10.1021/jp807133j
  • Zhang, F. J., & Oh, W. C. (2010). Characterization and photonic effect of novel Ag-CNT/TiO 2 composites and their bactericidal activities. Bulletin of the Korean Chemical Society, 31(7), 1981-1987. Doi. 10.5012/bkcs.2010.31.7.1981.
  • Zhou, J., & Qi, X. (2011). Multi‐walled carbon nanotubes/epilson‐polylysine nanocomposite with enhanced antibacterial activity. Letters in applied microbiology, 52(1), 76-83. doi.org/10.1111/j.1472-765X.2010.02969.x.
There are 57 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Physiology
Journal Section Research Articles
Authors

Yeşim Dağlıoğlu 0000-0001-8740-1162

Ömer Ertürk 0000-0001-5837-6893

Project Number -
Publication Date December 30, 2023
Published in Issue Year 2023 Volume: 5 Issue: 3

Cite

APA Dağlıoğlu, Y., & Ertürk, Ö. (2023). Enhancing the Antibacterial Effect by Adding MWCNT and ZrO2 Nanomaterials to Extracts Obtained from Different Parts of Persea americana Fruit. JENAS Journal of Environmental and Natural Studies, 5(3), 193-201. https://doi.org/10.53472/jenas.1340894

JENAS | Journal of Environmental and Natural Search / Studies | JENAS | Çevresel ve Doğal Araştırmalar / Çalışmalar Dergisi