Research Article
BibTex RIS Cite

Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles

Year 2019, Volume: 31 Issue: 3, 255 - 260, 01.09.2019
https://doi.org/10.7240/jeps.560040

Abstract

Zn0.96Cu0.01Ni0.03O nanoparticles were prepared by sol-gel technique and
annealed under wide temperature range (
450, 500, 550, 600, 700, 800, and
900 0C). To figure out the
possible structural phases X-ray diffraction technique (XRD) was used. The
lattice parameters were calculated by Rietveld analysis and correlated by
annealing temperatures. For the synthesized nanoparticles, the optimum
annealing temperatures were achieved at 450, 500, and 550 °C and further
annealing temperature increment gave rise to secondary NiO peaks. The Scanning
Electron Microscope (SEM) images show random ball-shaped particle distribution.
Energy
dispersive X-ray spectroscopy
(EDX) showed only the peaks belong to the
composition. Magnetic measurements were performed using
Quantum Design
Vibrating Sample Magnetometer (QDVSM) tool for
Zn0.96Cu0.01Ni0.03O nanosystems. From the DC magnetic field dependent
magnetization curves, clear paramagnetic behavior was revealed for all Cu-Ni
co-doped ZnO nanoparticles.

References

  • [1] C. Boyraz, N. Doğan, L. Arda, Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles, Ceramics International, 43 (2017) 15986-15991.
  • [2] A. Korbecka, J.A. Majewski, Low Temp. Phys. 35, 53 (2009)
  • [3] L. Arda, N. Dogan, C.Boyraz,: Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles. J Supercond Nov Magn DOI 10.1007/s10948-017-4203-5.
  • [4] J.T. Prater, S. Ramachandran, A. Tiwari, J. Narayan, J. Electron. Mater. 35, 852 (2006)
  • [5] C. Boyraz, B. Yesilbas, L. Arda. The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. Journ. of Supercon. Nov. Mag. June 2017, Volume 30, Issue 6, pp 1691–1698.
  • [6] D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, Phys. Rev. B 75, 144404 (2007)
  • [7] S. D. Senol, C Boyraz, E Ozugurlu, A Gungor, L Arda, Band Gap Engineering of Mg Doped ZnO Nanorods Prepared by a Hydrothermal Method. Crystal Research and Technology 54 (3), 1800233
  • [8] P. V. Dorpe, V. F. Motsnyi, M. Nijboer, E. Goovaerts, V. I. Safarov, J. Das, W. Van Roy, G. Borghs, J. De Boeck. Highly efficient room temperature spin injection in a metal-insulator-semiconductor light emitting diode. Jpn. J. Appl. Phys. Vol.42 No.5B pp.L502 - L504 (2003)
  • [9] A. Guler, L Arda, N Dogan, C Boyraz, E Ozugurlu, The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceramics International 45 (2), 1737-1745
  • [10] M. Goano, F. Bertazzi, M. Penna, and E. Bellotti, Journal of Applied Physics 102, 083709 (2007).
  • [11] S. D Senol, A Guler, C Boyraz, L Arda, Preparation Structure and Magnetic Properties of Mn-Doped ZnO Nanoparticles Prepared by Hydrothermal Method. Journal of Superconductivity and Novel Magnetism, 1-6
  • [12] A Guler, M Tosun, A Gungor, C Boyraz, L Arda, Effect of Annealing Temperature on Structure and Magnetic Properties of Zn0.94Mg0.01Mn0.05O Nanoparticles. Journal of Superconductivity and Novel Magnetism, 1-8
  • [13] M. Venkatesan, C. B. Fizgerald, J. G. Lunney, J. M. D. Coey, Anisotropic Ferromagnetism in Substituted Zinc Oxide, Phys. Rev. Lett. 93, (2004) 177206.
  • [14] X. X. Liu, F. T. Lin, L. L. Sun, W. J. Cheng, X. M. Ma, W. Z. Shi, Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition, Appl. Phys. Lett. 88 (2006) 062508.
  • [15] C. W. Cheng, G. Y. Xu, H. Q. Zhang, Y. Luo, Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism, Mater. Lett. 62 (2008) 1617.
  • [16] D. W. Wu, M. Yang, Z. B. Huang, G. F. Yin, X. M. Liao, Y. Q. Kang, X. F. Chen, H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, J. Colloid Interface Sci. 330, (2009) 380.
  • [17] S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. Shivaprasad, Study of ZnO and Ni-doped ZnO synthesized by atom beam sputtering technique, Appl. Phys. A. 90 (2008) 765.
  • [18] L. Arda, M. Açıkgöz, N. Doğan, D. Akcan, O. Çakıroğlu, Synthesis, characaterization and ESR studies of Zn1-xCox O nanoparticles, J Supercond Nov Magn 27 (2014) 799-804.
  • [19] G. Tang, X. Shi, C. Huo, Z. Wang, Ceramics International , 39, 4825-4829 (2013).
  • [20] M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, Y. Li, Ceramics International, 43 (3), 3166-3170, (2017).
  • [21] G. Srinivasan, M.S. Seehra, Physica Review B, 29, 6295-6298, (1984).
  • [22] P.M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T.S. Senthil, G. Rajesh, M.R. Venkatraman, Dhayalan Velauthapillai, Materials Characterization, doi: 10.1016/j.matchar.2016.02.020, (2016).
  • [23] M. Tadic, D. Nikolic, M. Patjan, G. R. Blake, Journal of Alloys and Compounds, 647, 1061-1068, (2015).
  • [24 ] H. Gao, D. Gao, J. Zhang, Z. Zhang, G. Yang, Z. Shi, J. Zhang, Z. Zhu, D. Xue, Micro Nano Letter, 7, 5-8, (2012).
  • [25] M. L. Dinesha, H. S. Jayanna, S. Ashoka, G. T. Chandrappa, Journal of Optoelectronics and Advanced Materials, vol. 11, pp. 964-969, (2009).

Zn0.96Cu0.01Ni0.03O nanoparçacıkların yapısal ve manyetik özellikleri

Year 2019, Volume: 31 Issue: 3, 255 - 260, 01.09.2019
https://doi.org/10.7240/jeps.560040

Abstract

Zn0.96Cu0.01Ni0.03O
nanoparçacıkları, sol-gel tekniği ile hazırlanıp geniş sıcaklık aralığında
(450, 500, 550, 600, 700, 800, 900 ° C) tavlandı. Olası yapısal fazları
belirlemek için X-ışını kırınım tekniği (XRD) kullanılmıştır. Kafes
parametreleri Rietveld analizi ile hesaplanmış ve tavlama sıcaklıkları ile
ilişkilendirilmiştir. Sentezlenen nanoparçacıklar için, optimum tavlama
sıcaklıkları 450, 500 ve 550 ° C'de elde edildi ve ayrıca tavlama sıcaklığı
artışı ikincil NiO fazlarına yol açmıştır. Taramalı Elektron Mikroskobu (SEM)
görüntüleri rastgele küre şeklindeki parçacık dağılımını göstermektedir. Enerji
dağıtıcı X-ışını spektroskopisi (EDX) sadece kompozisyona ait pikleri göstermektedir.
Zn0.96Cu0.01Ni0.03O nanoparçacıkları için manyetik
ölçümler, Kuantum Dizayn Titreşen Örnek Manyetometresi (QDVSM) kullanılarak
yapıldı. DC manyetik alana bağlı mıknatıslanma eğrilerinden, tüm Cu-Ni ortak
katkılı ZnO nanoparçacıklarının net paramanyetik davranışı gösterildi.

References

  • [1] C. Boyraz, N. Doğan, L. Arda, Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles, Ceramics International, 43 (2017) 15986-15991.
  • [2] A. Korbecka, J.A. Majewski, Low Temp. Phys. 35, 53 (2009)
  • [3] L. Arda, N. Dogan, C.Boyraz,: Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles. J Supercond Nov Magn DOI 10.1007/s10948-017-4203-5.
  • [4] J.T. Prater, S. Ramachandran, A. Tiwari, J. Narayan, J. Electron. Mater. 35, 852 (2006)
  • [5] C. Boyraz, B. Yesilbas, L. Arda. The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. Journ. of Supercon. Nov. Mag. June 2017, Volume 30, Issue 6, pp 1691–1698.
  • [6] D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, Phys. Rev. B 75, 144404 (2007)
  • [7] S. D. Senol, C Boyraz, E Ozugurlu, A Gungor, L Arda, Band Gap Engineering of Mg Doped ZnO Nanorods Prepared by a Hydrothermal Method. Crystal Research and Technology 54 (3), 1800233
  • [8] P. V. Dorpe, V. F. Motsnyi, M. Nijboer, E. Goovaerts, V. I. Safarov, J. Das, W. Van Roy, G. Borghs, J. De Boeck. Highly efficient room temperature spin injection in a metal-insulator-semiconductor light emitting diode. Jpn. J. Appl. Phys. Vol.42 No.5B pp.L502 - L504 (2003)
  • [9] A. Guler, L Arda, N Dogan, C Boyraz, E Ozugurlu, The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceramics International 45 (2), 1737-1745
  • [10] M. Goano, F. Bertazzi, M. Penna, and E. Bellotti, Journal of Applied Physics 102, 083709 (2007).
  • [11] S. D Senol, A Guler, C Boyraz, L Arda, Preparation Structure and Magnetic Properties of Mn-Doped ZnO Nanoparticles Prepared by Hydrothermal Method. Journal of Superconductivity and Novel Magnetism, 1-6
  • [12] A Guler, M Tosun, A Gungor, C Boyraz, L Arda, Effect of Annealing Temperature on Structure and Magnetic Properties of Zn0.94Mg0.01Mn0.05O Nanoparticles. Journal of Superconductivity and Novel Magnetism, 1-8
  • [13] M. Venkatesan, C. B. Fizgerald, J. G. Lunney, J. M. D. Coey, Anisotropic Ferromagnetism in Substituted Zinc Oxide, Phys. Rev. Lett. 93, (2004) 177206.
  • [14] X. X. Liu, F. T. Lin, L. L. Sun, W. J. Cheng, X. M. Ma, W. Z. Shi, Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition, Appl. Phys. Lett. 88 (2006) 062508.
  • [15] C. W. Cheng, G. Y. Xu, H. Q. Zhang, Y. Luo, Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism, Mater. Lett. 62 (2008) 1617.
  • [16] D. W. Wu, M. Yang, Z. B. Huang, G. F. Yin, X. M. Liao, Y. Q. Kang, X. F. Chen, H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, J. Colloid Interface Sci. 330, (2009) 380.
  • [17] S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. Shivaprasad, Study of ZnO and Ni-doped ZnO synthesized by atom beam sputtering technique, Appl. Phys. A. 90 (2008) 765.
  • [18] L. Arda, M. Açıkgöz, N. Doğan, D. Akcan, O. Çakıroğlu, Synthesis, characaterization and ESR studies of Zn1-xCox O nanoparticles, J Supercond Nov Magn 27 (2014) 799-804.
  • [19] G. Tang, X. Shi, C. Huo, Z. Wang, Ceramics International , 39, 4825-4829 (2013).
  • [20] M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, Y. Li, Ceramics International, 43 (3), 3166-3170, (2017).
  • [21] G. Srinivasan, M.S. Seehra, Physica Review B, 29, 6295-6298, (1984).
  • [22] P.M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T.S. Senthil, G. Rajesh, M.R. Venkatraman, Dhayalan Velauthapillai, Materials Characterization, doi: 10.1016/j.matchar.2016.02.020, (2016).
  • [23] M. Tadic, D. Nikolic, M. Patjan, G. R. Blake, Journal of Alloys and Compounds, 647, 1061-1068, (2015).
  • [24 ] H. Gao, D. Gao, J. Zhang, Z. Zhang, G. Yang, Z. Shi, J. Zhang, Z. Zhu, D. Xue, Micro Nano Letter, 7, 5-8, (2012).
  • [25] M. L. Dinesha, H. S. Jayanna, S. Ashoka, G. T. Chandrappa, Journal of Optoelectronics and Advanced Materials, vol. 11, pp. 964-969, (2009).
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Adil Güler 0000-0002-5345-8731

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 31 Issue: 3

Cite

APA Güler, A. (2019). Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles. International Journal of Advances in Engineering and Pure Sciences, 31(3), 255-260. https://doi.org/10.7240/jeps.560040
AMA Güler A. Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles. JEPS. September 2019;31(3):255-260. doi:10.7240/jeps.560040
Chicago Güler, Adil. “Structure and Magnetic Properties Zn0.96Cu0.01Ni0.03O Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences 31, no. 3 (September 2019): 255-60. https://doi.org/10.7240/jeps.560040.
EndNote Güler A (September 1, 2019) Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles. International Journal of Advances in Engineering and Pure Sciences 31 3 255–260.
IEEE A. Güler, “Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles”, JEPS, vol. 31, no. 3, pp. 255–260, 2019, doi: 10.7240/jeps.560040.
ISNAD Güler, Adil. “Structure and Magnetic Properties Zn0.96Cu0.01Ni0.03O Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences 31/3 (September 2019), 255-260. https://doi.org/10.7240/jeps.560040.
JAMA Güler A. Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles. JEPS. 2019;31:255–260.
MLA Güler, Adil. “Structure and Magnetic Properties Zn0.96Cu0.01Ni0.03O Nanoparticles”. International Journal of Advances in Engineering and Pure Sciences, vol. 31, no. 3, 2019, pp. 255-60, doi:10.7240/jeps.560040.
Vancouver Güler A. Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles. JEPS. 2019;31(3):255-60.