Research Article
BibTex RIS Cite

Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi

Year 2020, Volume: 32 Issue: 2, 197 - 205, 30.06.2020
https://doi.org/10.7240/jeps.659332

Abstract

Son yıllarda termal-sıvı uygulamaları artan ısı akısını karşılamak için en sık kullanılan yöntemlerden biri olmaya başlamıştır. Bu uygulamalardan en popüler olanlarından biri sıvıya nano-parçacık karıştırarak ısı transfer hızını arttırmaya çalışmaktır. Teoride kabul gören bu yöntem için farklı araştırma gruplarından farklı sonuçlar gelmekle birlikte kesin bir yargıya henüz tam olarak ulaşıldığı söylenemez. Sıvıya nano-parçacık eklemenin en zorlu yanı, birçok çalışmada belirtildiği gibi nano-parçacıkların yüzey üzerinde kümelenmeye ve çökelmeye meyilli olması ve bu durumun olması halinde ısı transferine negatif etki yapmasıdır. Bu özelliklerinden ötürü nano-parçacıkların sistem üzerinde kararsız davranış oluşturduğu da bazı çalışmalarda rapor edilmiştir. Bu çalışmada ana sıvı olarak suya Fe3O4 nano-parçacıkları eklenen sistemin ekserji analizi yapılmıştır. Burada en önemli nokta, sistemin manyetik kuvvete maruz bırakılması olup bu sayede çökelme ve kümelenmeye fırsat verilmeyecek olmasıdır. Bu çalışmada literatürden farklı olarak sistemin tek-fazlı ve havuz kaynama ısı transferi şartlarındaki verimi ekserjetik verim (harcanabilir enerji verimi) üzerinden değerlendirilecektir. Sonuçlar saf su, su-Fe3O4 nano-sıvısı ve manyetik kuvvet altındaki su-Fe3O4 nano-sıvısı şeklinde sunulup ekserji yıkım oranları karşılaştırılmıştır.

References

  • [1] Karayiannis, T.G. ve Mahmoud, M.M. (2017). Flow boiling in microchannels: Fundamentals and applications. Applied Thermal Engineering, 115, 1372-1397.
  • [2] Mudawar, I. (2011). Two-phase microchannel heat sinks: theory, applications, and limitations. Journal Of Electronic Packaging, 133(4), 2-33.
  • [3] Kaya, A., Özdemir, M.R. ve Koşar, A. (2013). High mass flux flow boiling and critical heat flux in microscale. International Journal of Thermal Sciences, 65, 70-78.
  • [4] Kang, S. W., Chen, Y.T. ve Chang, G.S. (2002). The manufacture and test of (110) orientated silicon based micro heat exchanger. Tamkang Journal of Science and Engineering, 5(3), 129-136.
  • [5] Özdemir, M.R., Kaya, A. ve Koşar, A. (2011). Low mass quality flow boiling in microtubes at high mass fluxes. Journal of Thermal Science and Engineering Applications, 3(4), 1-10.
  • [6] Yang, B., Wang, P. ve Bar-Cohen, A. (2007). Mini-contact enhanced thermoelectric cooling of hot spots in high power devices. IEEE Transactions on Components and Packaging Technologies, 30(3), 432-438.
  • [7] Sajid, M.U. ve Ali, H.M. (2019). Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews, 103, 556-592.
  • [8] Xu, H.J., Xing, Z.B., Wang, F.Q. ve Cheng, Z.M. (2019). Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 195, 462-483.
  • [9] Hassan, M., Marin, M., Alsharif, A. ve Ellahi, R. (2018). Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Physics Letters A, 382(38), 2749-2753.
  • [10] Ebrahimnia-Bajestan, E., Moghadam, M.C., Niazmand, H., Daungthongsuk, W. ve Wongwises, S. (2016). Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer, 92, 1041-1052.
  • [11] Kakaç, S. ve Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13-14), 3187-3196.
  • [12] Murshed, S.M.S., Leong, K.C. ve Yang, C. (2005). Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of Thermal Sciences, 44(4), 367-373.
  • [13] Sundar, L.S., Singh, M.K. ve Sousa, A.C. (2013). Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. International Communications in Heat and Mass Transfer, 44, 7-14.
  • [14] Motezakker, A.R., Sadaghiani, A.K., Akkoc, Y., Parapari, S.S., Gözüaçık, D. ve Koşar, A. (2017). Surface modifications for phase change cooling applications via crenarchaeon Sulfolobus solfataricus P2 bio-coatings. Scientific reports 17891, 7(1), USA.
  • [15] Sadaghiani, A.K., Motezakker, A.R., Kasap, S., Kaya, I.I. ve Koşar, A. (2018). Foamlike 3D graphene coatings for cooling systems involving phase change. ACS Omega, 3(3), 2804-2811.
  • [16] Kim, S.H., Lee, G.C., Kang, J.Y., Moriyama, K., Kim, M.H. ve Park, H.S. (2015). Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface. International Journal of Heat and Mass Transfer, 91, 1140-1147.
  • [17] Kim, B.S., Choi, G., Shim, D.I., Kim, K.M. ve Cho, H.H. (2016). Surface roughening for hemi-wicking and its impact on convective boiling heat transfer. International Journal of Heat and Mass Transfer, 102, 1100-1107.
  • [18] Buongiorno, J. (2015). Convective transport in nanofluid, Journal of Heat Transfer, 128(3), 240-250.
  • [19] Godson, L., Raja, B., Lal, D.M. ve Wongwises, S. (2010). Enhancement of heat transfer using nanofluids—an overview. Renewable and sustainable energy reviews, 14(2), 629-641.
  • [20] Şeşen, M., Tekşen, Y., Şahin, B., Şendur, K., Pınar Mengüç, M. ve Koşar, A. (2013). Boiling heat transfer enhancement of magnetically actuated nanofluids. Applied Physics Letters, 102(16), 163107.
  • [21] Kurtoğlu, E., Bilgin, A., Şeşen, M., Yıldız, M., Acar, H.F.Y. and Koşar, A. (2012). Ferrofluid actuation with varying magnetic fields for micropumping applications. Microfluidics and Nanofluidics, 13(4), 683-694.
  • [22] Zuvin, M., Koçak, M., Ünal, Ö., Akkoç, Y., Kutlu, Ö., Acar, H.F.Y., Gözüaçik, D. and Koşar, A. (2019). Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. Journal of Magnetism and Magnetic Materials, 483, 169-177.
  • [23] Özdemir, M.R., Sadaghiani, A.K., Motezakker, A.R., Parapari, S.S., Park, H.S., Acar, H.F.Y. ve Koşar, A. (2018). Experimental studies on ferrofluid pool boiling in the presence of external magnetic force. Applied Thermal Engineering, 139, 598-608.
  • [24] Şeşen, M., Tekşen, Y., Şendur, K., Pınar Mengüç, M., Öztürk, H., Acar, H.F.Y. and Koşar, A. (2012). Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid. Journal of Applied Physics, 112(6), 320-326.
  • [25] Bejan, A. (2016). Entropy generation and exergy destruction. In: Advanced Thermodynamics, 4. Baskı, John Wiley & Sons, USA, s. 95-140.
  • [26] Kanoglu, M., Dincer, I. ve Rosen, M.A. (2008). Exergetic performance investigation of a turbocharged stationary diesel engine. International Journal of Exergy, 5(2), 193-203.
  • [27] Rosen, M.A., Dincer, I. ve Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy policy, 36(1), 128-137.
  • [28] Khaleduzzaman, S.S., Sohel, M.R., Saidur, R., Mahbubul, I.M., Shahrul, I.M., Akash, B.A. ve Selvaraj, J. (2014). Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. International Communications in Heat and Mass Transfer, 57, 118-127.
  • [29] Esfahani, M.R. ve Languri, E.M. (2017). Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Experimental Thermal and Fluid Science, 83, 100-106.
  • [30] Said, Z., Saidur, R. ve Rahim, N.A. (2016). Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. Journal of Cleaner Production, 133, 518-530.
  • [31] Mukherjee, S., Mishra, P.C. ve Chaudhuri, P. (2019). Energy and Exergy Viability Analysis of Nanofluids As A Coolant for Microchannel Heat Sink. International Journal of Automotive and Mechanical Engineering, 16(1), 6090-6107.
  • [32] Fayaz, H., Nasrin, R., Rahim, N.A. ve Hasanuzzaman, M. (2018). Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy, 169, 217-230.
  • [33] Juha, P., Tapani, J. ve Valeria, H. (2009). Design of magnetic circuits. In: Design of rotating electrical machines, 2. baskı, Wiley, USA, s. 155-227.
  • [34] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. ve Matsuura, Y. (1984). New material for permanent magnets on a base of Nd and Fe. Journal of Applied Physics, 55(6), 2083-2087.
  • [35] Moran, M.J., Shapiro, H.N., Boettner, D.D. ve Bailey, M.B. (2010). Exergy Analysis. In: Fundamentals of engineering thermodynamics, 9. baskı, Wiley, USA, s. 272-315.
  • [36] Karimzadehkhouei, M., Şendur, K., Mengüç, M.P. ve Koşar, A. (2017). The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling. International Journal of Heat and Mass Transfer, 109, 157-166.
  • [37] Reddy, P.S. ve Chamkha, A.J. (2016). Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alexandria Engineering Journal, 55(1), 331-341.
Year 2020, Volume: 32 Issue: 2, 197 - 205, 30.06.2020
https://doi.org/10.7240/jeps.659332

Abstract

References

  • [1] Karayiannis, T.G. ve Mahmoud, M.M. (2017). Flow boiling in microchannels: Fundamentals and applications. Applied Thermal Engineering, 115, 1372-1397.
  • [2] Mudawar, I. (2011). Two-phase microchannel heat sinks: theory, applications, and limitations. Journal Of Electronic Packaging, 133(4), 2-33.
  • [3] Kaya, A., Özdemir, M.R. ve Koşar, A. (2013). High mass flux flow boiling and critical heat flux in microscale. International Journal of Thermal Sciences, 65, 70-78.
  • [4] Kang, S. W., Chen, Y.T. ve Chang, G.S. (2002). The manufacture and test of (110) orientated silicon based micro heat exchanger. Tamkang Journal of Science and Engineering, 5(3), 129-136.
  • [5] Özdemir, M.R., Kaya, A. ve Koşar, A. (2011). Low mass quality flow boiling in microtubes at high mass fluxes. Journal of Thermal Science and Engineering Applications, 3(4), 1-10.
  • [6] Yang, B., Wang, P. ve Bar-Cohen, A. (2007). Mini-contact enhanced thermoelectric cooling of hot spots in high power devices. IEEE Transactions on Components and Packaging Technologies, 30(3), 432-438.
  • [7] Sajid, M.U. ve Ali, H.M. (2019). Recent advances in application of nanofluids in heat transfer devices: a critical review. Renewable and Sustainable Energy Reviews, 103, 556-592.
  • [8] Xu, H.J., Xing, Z.B., Wang, F.Q. ve Cheng, Z.M. (2019). Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 195, 462-483.
  • [9] Hassan, M., Marin, M., Alsharif, A. ve Ellahi, R. (2018). Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Physics Letters A, 382(38), 2749-2753.
  • [10] Ebrahimnia-Bajestan, E., Moghadam, M.C., Niazmand, H., Daungthongsuk, W. ve Wongwises, S. (2016). Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer, 92, 1041-1052.
  • [11] Kakaç, S. ve Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52(13-14), 3187-3196.
  • [12] Murshed, S.M.S., Leong, K.C. ve Yang, C. (2005). Enhanced thermal conductivity of TiO2—water based nanofluids. International Journal of Thermal Sciences, 44(4), 367-373.
  • [13] Sundar, L.S., Singh, M.K. ve Sousa, A.C. (2013). Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. International Communications in Heat and Mass Transfer, 44, 7-14.
  • [14] Motezakker, A.R., Sadaghiani, A.K., Akkoc, Y., Parapari, S.S., Gözüaçık, D. ve Koşar, A. (2017). Surface modifications for phase change cooling applications via crenarchaeon Sulfolobus solfataricus P2 bio-coatings. Scientific reports 17891, 7(1), USA.
  • [15] Sadaghiani, A.K., Motezakker, A.R., Kasap, S., Kaya, I.I. ve Koşar, A. (2018). Foamlike 3D graphene coatings for cooling systems involving phase change. ACS Omega, 3(3), 2804-2811.
  • [16] Kim, S.H., Lee, G.C., Kang, J.Y., Moriyama, K., Kim, M.H. ve Park, H.S. (2015). Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface. International Journal of Heat and Mass Transfer, 91, 1140-1147.
  • [17] Kim, B.S., Choi, G., Shim, D.I., Kim, K.M. ve Cho, H.H. (2016). Surface roughening for hemi-wicking and its impact on convective boiling heat transfer. International Journal of Heat and Mass Transfer, 102, 1100-1107.
  • [18] Buongiorno, J. (2015). Convective transport in nanofluid, Journal of Heat Transfer, 128(3), 240-250.
  • [19] Godson, L., Raja, B., Lal, D.M. ve Wongwises, S. (2010). Enhancement of heat transfer using nanofluids—an overview. Renewable and sustainable energy reviews, 14(2), 629-641.
  • [20] Şeşen, M., Tekşen, Y., Şahin, B., Şendur, K., Pınar Mengüç, M. ve Koşar, A. (2013). Boiling heat transfer enhancement of magnetically actuated nanofluids. Applied Physics Letters, 102(16), 163107.
  • [21] Kurtoğlu, E., Bilgin, A., Şeşen, M., Yıldız, M., Acar, H.F.Y. and Koşar, A. (2012). Ferrofluid actuation with varying magnetic fields for micropumping applications. Microfluidics and Nanofluidics, 13(4), 683-694.
  • [22] Zuvin, M., Koçak, M., Ünal, Ö., Akkoç, Y., Kutlu, Ö., Acar, H.F.Y., Gözüaçik, D. and Koşar, A. (2019). Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. Journal of Magnetism and Magnetic Materials, 483, 169-177.
  • [23] Özdemir, M.R., Sadaghiani, A.K., Motezakker, A.R., Parapari, S.S., Park, H.S., Acar, H.F.Y. ve Koşar, A. (2018). Experimental studies on ferrofluid pool boiling in the presence of external magnetic force. Applied Thermal Engineering, 139, 598-608.
  • [24] Şeşen, M., Tekşen, Y., Şendur, K., Pınar Mengüç, M., Öztürk, H., Acar, H.F.Y. and Koşar, A. (2012). Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid. Journal of Applied Physics, 112(6), 320-326.
  • [25] Bejan, A. (2016). Entropy generation and exergy destruction. In: Advanced Thermodynamics, 4. Baskı, John Wiley & Sons, USA, s. 95-140.
  • [26] Kanoglu, M., Dincer, I. ve Rosen, M.A. (2008). Exergetic performance investigation of a turbocharged stationary diesel engine. International Journal of Exergy, 5(2), 193-203.
  • [27] Rosen, M.A., Dincer, I. ve Kanoglu, M. (2008). Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy policy, 36(1), 128-137.
  • [28] Khaleduzzaman, S.S., Sohel, M.R., Saidur, R., Mahbubul, I.M., Shahrul, I.M., Akash, B.A. ve Selvaraj, J. (2014). Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system. International Communications in Heat and Mass Transfer, 57, 118-127.
  • [29] Esfahani, M.R. ve Languri, E.M. (2017). Exergy analysis of a shell-and-tube heat exchanger using graphene oxide nanofluids. Experimental Thermal and Fluid Science, 83, 100-106.
  • [30] Said, Z., Saidur, R. ve Rahim, N.A. (2016). Energy and exergy analysis of a flat plate solar collector using different sizes of aluminium oxide based nanofluid. Journal of Cleaner Production, 133, 518-530.
  • [31] Mukherjee, S., Mishra, P.C. ve Chaudhuri, P. (2019). Energy and Exergy Viability Analysis of Nanofluids As A Coolant for Microchannel Heat Sink. International Journal of Automotive and Mechanical Engineering, 16(1), 6090-6107.
  • [32] Fayaz, H., Nasrin, R., Rahim, N.A. ve Hasanuzzaman, M. (2018). Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. Solar Energy, 169, 217-230.
  • [33] Juha, P., Tapani, J. ve Valeria, H. (2009). Design of magnetic circuits. In: Design of rotating electrical machines, 2. baskı, Wiley, USA, s. 155-227.
  • [34] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H. ve Matsuura, Y. (1984). New material for permanent magnets on a base of Nd and Fe. Journal of Applied Physics, 55(6), 2083-2087.
  • [35] Moran, M.J., Shapiro, H.N., Boettner, D.D. ve Bailey, M.B. (2010). Exergy Analysis. In: Fundamentals of engineering thermodynamics, 9. baskı, Wiley, USA, s. 272-315.
  • [36] Karimzadehkhouei, M., Şendur, K., Mengüç, M.P. ve Koşar, A. (2017). The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling. International Journal of Heat and Mass Transfer, 109, 157-166.
  • [37] Reddy, P.S. ve Chamkha, A.J. (2016). Influence of size, shape, type of nanoparticles, type and temperature of the base fluid on natural convection MHD of nanofluids. Alexandria Engineering Journal, 55(1), 331-341.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Mehmed Rafet Özdemir 0000-0002-3832-9659

Publication Date June 30, 2020
Published in Issue Year 2020 Volume: 32 Issue: 2

Cite

APA Özdemir, M. R. (2020). Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi. International Journal of Advances in Engineering and Pure Sciences, 32(2), 197-205. https://doi.org/10.7240/jeps.659332
AMA Özdemir MR. Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi. JEPS. June 2020;32(2):197-205. doi:10.7240/jeps.659332
Chicago Özdemir, Mehmed Rafet. “Demir Bazlı Nano-Sıvının Tek-Faz Ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi”. International Journal of Advances in Engineering and Pure Sciences 32, no. 2 (June 2020): 197-205. https://doi.org/10.7240/jeps.659332.
EndNote Özdemir MR (June 1, 2020) Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi. International Journal of Advances in Engineering and Pure Sciences 32 2 197–205.
IEEE M. R. Özdemir, “Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi”, JEPS, vol. 32, no. 2, pp. 197–205, 2020, doi: 10.7240/jeps.659332.
ISNAD Özdemir, Mehmed Rafet. “Demir Bazlı Nano-Sıvının Tek-Faz Ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi”. International Journal of Advances in Engineering and Pure Sciences 32/2 (June 2020), 197-205. https://doi.org/10.7240/jeps.659332.
JAMA Özdemir MR. Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi. JEPS. 2020;32:197–205.
MLA Özdemir, Mehmed Rafet. “Demir Bazlı Nano-Sıvının Tek-Faz Ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 2, 2020, pp. 197-05, doi:10.7240/jeps.659332.
Vancouver Özdemir MR. Demir Bazlı Nano-Sıvının Tek-Faz ve Havuz Kaynama Isı Transferi Şartlarında Ekserji Analizi. JEPS. 2020;32(2):197-205.