Research Article
BibTex RIS Cite

Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme

Year 2022, Volume: 34 Issue: 1, 27 - 37, 30.03.2022
https://doi.org/10.7240/jeps.918430

Abstract

Endüstriyel faaliyetler sonucu oluşan arıtma çamurlarının geri kazanımı, arıtımı veya bertarafı tüm dünyada en önemli çevresel sorunlar arasındadır. Atık çamurların yönetiminde yaygın olarak kullanılan yakma, depolama, susuzlaştırma veya tarım alanlarında kullanma gibi yöntemler bu atıkların içerisindeki ağır metallerin uzaklaştırılmasında yetersiz kalmaktadır. Bu atıkların çevre için risk oluşturması ve arıtma maliyetleri gibi sorunların yanı sıra doğal kaynakların da her geçen yıl azaldığı düşünüldüğünde, oluşan atık çamurların değerlendirilerek ikincil malzemelere dönüştürülmesinin önemi artmaktadır. Bu bağlamda vitirifikasyon yöntemi, atıklardan yapı malzemeleri (cam-seramik, tuğla, pigment vb.) üretmenin yanı sıra atıkların içerisindeki ağır metallerin stabilizasyonunu da sağlayan, döngüsel ekonomi yaklaşımıyla örtüşen bir yöntem olarak dikkati çekmektedir. Bu makalede, endüstriyel artıma çamurlarının katma değeri olan ürünlere dönüştürülmesi noktasında, arıtma çamurlarının vitrifikasyonu ve vitrifiye ürünlerin kullanım alanları ile ilgili çalışmalar incelenmiştir.

Supporting Institution

Eskişehir Teknik Üniversitesi, TÜBİTAK

Project Number

Eskişehir Teknik Üniversitesi 20ADP186, TÜBİTAK 120Y059

Thanks

Bu çalışma, Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı (Proje No: 20ADP186) ve TÜBİTAK (Proje No: 120Y159) tarafından desteklenmiştir.

References

  • [1] Christodoulou, A. ve Stamatelatou, K. (2016). Overview of legislation on sewage sludge management in developed countries worldwide. Water Sci. Technol, 73, 453–462.
  • [2] Yang, G., Zhang, G. ve Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Res, 78, 60–73.
  • [3] Zaker, A., Chen, Z., Wang, X. ve Zhang, Q. (2019). Microwave-assisted pyrolysis of sewage sludge: a review. Fuel Process. Technol, 187, 84–104.
  • [4] Maiden, P., Hearn, M., Boysen, R., Chier, P., Warnecke, M. ve Jackson, W. (2015). Alum Sludge Re-Use, Investigation (10OS-42) Prepared by GHD and Centre for Green Chemistry (Monash University) for The Smart Water Fund. Victoria, ACTEW Water & Seawater, Melbourne, Australia.
  • [5] Zhang, Q., Hu, J., Lee, D.-J., Chang, Y. ve Lee, Y.-J. (2017). Sludge treatment: current research trends. Bioresour. Technol, 243, 1159–1172.
  • [6] Lynn, C.J., Dhir, R.K. ve Ghataora, G.S. (2016). Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics. Water Sci. Technol, 74, 17–29.
  • [7] T.C. Çevre ve Şehircilik Bakanlığı (2020). 2018 Yılı Tehlikeli Atık İstatistikleri Bülteni.
  • [8] T.C. Çevre ve Şehircilik Bakanlığı (2017). Ulusal Atık Yönetimi ve Eylem Planı (2016–2023).
  • [9] Tang, Y., Wu, P., Shih, K. ve Liao, C. (2019). Industrial sludge for ceramic products and its benefit for metal stabilization. Industrial and Municipal Sludge, 253–293.
  • [10] Kulkarni, V. V., Golder, A. K. ve Ghosh, P. K. (2019). Production of composite clay bricks: A value-added solution to hazardous sludge through effective heavy metal fixation. Construction and Building Materials, 201, 391–400.
  • [11] Salan, T. (2014). Atıksu Arıtma Çamurlarının Türkiye'deki Durumu ve Enerji Üretiminde Değerlendirilme Olanakları. ICCI 2014, Conference Paper, 190–195.
  • [12] Mininni, G., Blanch, A., Lucena, F. ve Berselli, S. (2015). EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res, 22 (10), 7361–7374.
  • [13] Gherghel, A., Teodosiu, C. ve De Gisi, S. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Cleaner Prod.
  • [14] Lynn, C.J., Dhir, R.K., Ghataora, G.S. ve West, R.P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater, 98, 767–779.
  • [15] Świerczek, L., Cieślik, B. M. ve Konieczka, P. (2018). The potential of raw sewage sludge in construction industry – A review. Journal of Cleaner Production, 200, 342–356.
  • [16] Chen, Y., Zhang, Y., Chen, T., Zhao, Y. ve Bao, S. (2011). Preparation of eco-friendly construction bricks from hematite tailings. Constr. Build. Mater, 25 (4), 2107–2111.
  • [17] Smol, M., Kulczycka, J., Henclik, A., Gorazda, K. ve Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod, 95, 45–54.
  • [18] Supino, S., Malandrino, O., Testa, M. ve Sica, D. (2016). Sustainability in the EU cement industry: the Italian and German experiences. J. Clean. Prod, 112, 430–442.
  • [19] Jantzen, C. M. (2011). Historical development of glass and ceramic waste forms for high level radioactive wastes. Handbook of Advanced Radioactive Waste Conditioning Technologies, 159–172.
  • [20] Bernardo, E., Scarinci, G. ve Colombo, P. (2017). Vitrification of Waste and Reuse of Waste-Derived Glass. Encyclopedia of Sustainability Science and Technology, 1–34.
  • [21] Climate Policy Watcher, Ex Situ And In Situ Vitrification, https://www.climate-policy-watcher.org/industrial-wastes/ex-situ-and-in-situ-vitrification.html, (Nisan 2021).
  • [22] Meegoda, J. N., Ezeldin, A. S., Fang, H.-Y. ve Inyang, H. I. (2003). Waste Immobilization Technologies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(1), 46–58.
  • [23] Cieślik, B.M., Namieśnik, J. ve Konieczka, P. (2015). Review of sewage sludge management: standards, regulations and analytical methods. J. Cleaner Prod, 90, 1–15.
  • [24] De Carvalho Gomes, S., Zhou, J. L., Li, W. ve Long, G. (2019). Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resources, Conservation and Recycling, 145, 148–159.
  • [25] USEPA (1992). SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure (TCLP).
  • [26] Buelt, J. L. ve Farnsworth, R. K. (1991). In Situ Vitrification of Soils Containing Various Metals. Nuclear Technology, 96(2), 178–184.
  • [27] Byers, M. G., FitzPatrick, V. F. ve Holtz, R. D. (1991). Site Remediation by In Situ Vitrification. Transportation Research Record, 1312, 162–166.
  • [28] USEPA (1989). Innovative Technology: In-Situ Vitrification. Solid Waste and Emergency Response, Directive 9200.5-251FS.
  • [29] Climate Policy Watcher, Electric Furnace Vitrification System, https://www.climate-policy-watcher.org/industrial-wastes/figure-5-electric-furnace-vitrification-system-courtesy-of-usepa.html, (Nisan 2021).
  • [30] Bernardo, E. ve Dal Maschio, R. (2011). Glass–ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses. Waste Management, 31(11), 2245–2252.
  • [31] Vernaz, E., Gin, S. ve Veyer, C. (2012). Waste Glass. Comprehensive Nuclear Materials, 5, 451–483.
  • [32] Borowski, G. (2012). Suitability Tests of Fly Ashes Vitrification from Sewage Sludge Incineration. Archives of Environmental Protection, 38(2).
  • [33] Chinnam, R.K., Francis, A.A., Will, J., Bernardo, E. ve Boccaccini, A.R. (2013). Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. J. Non Cryst. Solids, 365, 63–74.
  • [34] Garcia-Valles, M., Avila, G., Martinez, S., Terradas, R. ve Nogués, J. M. (2007). Heavy metal-rich wastes sequester in mineral phases through a glass–ceramic process. Chemosphere, 68(10), 1946–1953.
  • [35] Silva, A. C., Mello-Castanho, S., Guitian, F., Montero, I., Esteban-Cubillo, A., Sobrados, I., Sanz, J. ve Moya, J. S. (2008). Incorporation of Galvanic Waste (Cr, Ni, Cu, Zn, Pb) in a Soda–Lime–Borosilicate Glass. Journal of the American Ceramic Society, 91(4), 1300–1305.
  • [36] Pan, D. A., Li, L. J., Yang, J., Bu, J. B., Guo, B., Liu, B., Zhang, S. G. ve Volinsky, A. A. (2015). Production of glass–ceramics from heavy metal gypsum and pickling sludge. International Journal of Environmental Science and Technology, 12(9), 3047–3052.
  • [37] Özdemir, Ö.D., Figen, A.K. ve Pişkin S. (2011). Utilization of Galvanic Sludge as Raw Material for Production of Glass. International Conference on Chemistry and Chemical Process, 10, 45–49.
  • [38] Yang, J., Zhang, S.-G., Pan, D.-A., Liu, B., Wu, C.-L. ve Volinsky, A. A. (2016). Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent. Rare Metals, 35(3), 269–274.
  • [39] Mymrin, V., Alekseev, K., Catai, R. E., Nagalli, A., Aibuldinov, Y. K., Bekturganov, N. S., Rose, J. L. ve Izzo, R. L. S. (2016). Red ceramics from composites of hazardous sludge with foundry sand, glass waste and acid neutralization salts. Journal of Environmental Chemical Engineering, 4(1), 753–761.
  • [40] Felisberto, R., Santos, M. C., Arcaro, S., Basegio, T. M. ve Bergmann, C. P. (2018). Assessment of environmental compatibility of glass–ceramic materials obtained from galvanic sludge and soda–lime glass residue. Process Safety and Environmental Protection, 120, 72–78.
  • [41] Starostina, I., Simonov, M., Volodchenko, A., Starostina, Y., Fomin, A. ve Fokina, E. (2018). The usage of iron-containing sludge wastes in ceramic bricks production. IOP Conference Series: Materials Science and Engineering, 365, 032066.
  • [42] Ballesteros, S., Rincón-Mora, B., Jordán, M.M. ve Rincón, J.Ma. (2019). Vitrification of a sodium chromate waste and mechanical properties of a final glass-ceramic. Materials Letters: X, 100025.
  • [43] Tan, S., Kirk, N., Marshall, M., McGann, O. ve Hand, R. J. (2019). Vitrification of an intermediate level Magnox sludge waste. Journal of Nuclear Materials, 515, 392–400.
  • [44] Anderson, M., Biggs, A. ve Winters, C. (2003). Use of two blended water industry by-product wastes as a composite substitute for traditional raw materials used in clay brick manufacture. Recycling and Reuse of Waste Materials, 417–426.
  • [45] Teixeira, S., Santos, G., Souza, A., Alessio, P., Souza, S. ve Souza, N. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl. Clay Sci, 53 (4), 561–565.
  • [46] Kizinievič, O., Žurauskienė, R., Kizinievič, V. ve Žurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic products. Constr. Build. Mater, 41, 464–473.
  • [47] Wolff, E., Schwabe, W.K. ve Conceição, S.V. (2015). Utilization of water treatment plant sludge in structural ceramics. J. Clean. Product, 96, 282–289.
  • [48] Weng, C.-H., Lin, D.-F. ve Chiang, P.-C. (2003). Utilization of sludge as brick materials. Adv. Environ. Res, 7 (3), 679–685.
  • [49] Mao, L., Wu, Y., Zhang, W. ve Huang, Q. (2019). The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing. Journal of Environmental Management, 231, 780–787.
  • [50] Zhang, M., Chen, C., Mao, L. ve Wu, Q. (2018). Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation. Construction and Building Materials, 159, 27–36.
  • [51] Gargori, C., Prim, S. R., LLusar, M., Folgueras, M. V. ve Monrós, G. (2018). Recycling of Cr/Ni/Cu plating wastes as black ceramic pigments. Materials Letters, 218, 341–345.
  • [52] Mitiu, M.A., Marcus, M.I., Vlad, M. ve Balaceanu, C.M. (2018). Stability of Ceramic Glazes Obtained by Valorification of Anorganic Pigments Extracted from Electroplating Sludge. Revista de Chimie, 69(3), 571–574.
  • [53] Carneiro, J., Tobaldi, D. M., Capela, M. N., Novais, R. M., Seabra, M. P. ve Labrincha, J. A. (2018). Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Management, 80, 371–378.
  • [54] Chou, I.-C., Kuo, Y.-M., Lin, C., Wang, J.-W., Wang, C.-T. ve Chang-Chien, G.-P. (2012). Electroplating sludge metal recovering with vitrification using mineral powder additive. Resources, Conservation and Recycling, 58, 45–49.
  • [55] Huang, R., Huang, K.-L., Lin, Z.-Y., Wang, J.-W., Lin, C. ve Kuo, Y.-M. (2013). Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. Journal of Environmental Management, 129, 586–592.
  • [56] Al Hoseny, N. F., Amin, S. K., Fouad, M. M. K. ve Abadir, M. F. (2018). Reuse of ceramic sludge in the production of vitrified clay pipes. Ceramics International, 44(11), 12420–12425.
  • [57] Nandi, V. S., Raupp-Pereira, F., Montedo, O. R. K. ve Oliveira, A. P. N. (2015). The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. Journal of Cleaner Production, 86, 461–470.
Year 2022, Volume: 34 Issue: 1, 27 - 37, 30.03.2022
https://doi.org/10.7240/jeps.918430

Abstract

Project Number

Eskişehir Teknik Üniversitesi 20ADP186, TÜBİTAK 120Y059

References

  • [1] Christodoulou, A. ve Stamatelatou, K. (2016). Overview of legislation on sewage sludge management in developed countries worldwide. Water Sci. Technol, 73, 453–462.
  • [2] Yang, G., Zhang, G. ve Wang, H. (2015). Current state of sludge production, management, treatment and disposal in China. Water Res, 78, 60–73.
  • [3] Zaker, A., Chen, Z., Wang, X. ve Zhang, Q. (2019). Microwave-assisted pyrolysis of sewage sludge: a review. Fuel Process. Technol, 187, 84–104.
  • [4] Maiden, P., Hearn, M., Boysen, R., Chier, P., Warnecke, M. ve Jackson, W. (2015). Alum Sludge Re-Use, Investigation (10OS-42) Prepared by GHD and Centre for Green Chemistry (Monash University) for The Smart Water Fund. Victoria, ACTEW Water & Seawater, Melbourne, Australia.
  • [5] Zhang, Q., Hu, J., Lee, D.-J., Chang, Y. ve Lee, Y.-J. (2017). Sludge treatment: current research trends. Bioresour. Technol, 243, 1159–1172.
  • [6] Lynn, C.J., Dhir, R.K. ve Ghataora, G.S. (2016). Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics. Water Sci. Technol, 74, 17–29.
  • [7] T.C. Çevre ve Şehircilik Bakanlığı (2020). 2018 Yılı Tehlikeli Atık İstatistikleri Bülteni.
  • [8] T.C. Çevre ve Şehircilik Bakanlığı (2017). Ulusal Atık Yönetimi ve Eylem Planı (2016–2023).
  • [9] Tang, Y., Wu, P., Shih, K. ve Liao, C. (2019). Industrial sludge for ceramic products and its benefit for metal stabilization. Industrial and Municipal Sludge, 253–293.
  • [10] Kulkarni, V. V., Golder, A. K. ve Ghosh, P. K. (2019). Production of composite clay bricks: A value-added solution to hazardous sludge through effective heavy metal fixation. Construction and Building Materials, 201, 391–400.
  • [11] Salan, T. (2014). Atıksu Arıtma Çamurlarının Türkiye'deki Durumu ve Enerji Üretiminde Değerlendirilme Olanakları. ICCI 2014, Conference Paper, 190–195.
  • [12] Mininni, G., Blanch, A., Lucena, F. ve Berselli, S. (2015). EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res, 22 (10), 7361–7374.
  • [13] Gherghel, A., Teodosiu, C. ve De Gisi, S. (2019). A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Cleaner Prod.
  • [14] Lynn, C.J., Dhir, R.K., Ghataora, G.S. ve West, R.P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Constr. Build. Mater, 98, 767–779.
  • [15] Świerczek, L., Cieślik, B. M. ve Konieczka, P. (2018). The potential of raw sewage sludge in construction industry – A review. Journal of Cleaner Production, 200, 342–356.
  • [16] Chen, Y., Zhang, Y., Chen, T., Zhao, Y. ve Bao, S. (2011). Preparation of eco-friendly construction bricks from hematite tailings. Constr. Build. Mater, 25 (4), 2107–2111.
  • [17] Smol, M., Kulczycka, J., Henclik, A., Gorazda, K. ve Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. J. Clean. Prod, 95, 45–54.
  • [18] Supino, S., Malandrino, O., Testa, M. ve Sica, D. (2016). Sustainability in the EU cement industry: the Italian and German experiences. J. Clean. Prod, 112, 430–442.
  • [19] Jantzen, C. M. (2011). Historical development of glass and ceramic waste forms for high level radioactive wastes. Handbook of Advanced Radioactive Waste Conditioning Technologies, 159–172.
  • [20] Bernardo, E., Scarinci, G. ve Colombo, P. (2017). Vitrification of Waste and Reuse of Waste-Derived Glass. Encyclopedia of Sustainability Science and Technology, 1–34.
  • [21] Climate Policy Watcher, Ex Situ And In Situ Vitrification, https://www.climate-policy-watcher.org/industrial-wastes/ex-situ-and-in-situ-vitrification.html, (Nisan 2021).
  • [22] Meegoda, J. N., Ezeldin, A. S., Fang, H.-Y. ve Inyang, H. I. (2003). Waste Immobilization Technologies. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(1), 46–58.
  • [23] Cieślik, B.M., Namieśnik, J. ve Konieczka, P. (2015). Review of sewage sludge management: standards, regulations and analytical methods. J. Cleaner Prod, 90, 1–15.
  • [24] De Carvalho Gomes, S., Zhou, J. L., Li, W. ve Long, G. (2019). Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resources, Conservation and Recycling, 145, 148–159.
  • [25] USEPA (1992). SW-846 Test Method 1311: Toxicity Characteristic Leaching Procedure (TCLP).
  • [26] Buelt, J. L. ve Farnsworth, R. K. (1991). In Situ Vitrification of Soils Containing Various Metals. Nuclear Technology, 96(2), 178–184.
  • [27] Byers, M. G., FitzPatrick, V. F. ve Holtz, R. D. (1991). Site Remediation by In Situ Vitrification. Transportation Research Record, 1312, 162–166.
  • [28] USEPA (1989). Innovative Technology: In-Situ Vitrification. Solid Waste and Emergency Response, Directive 9200.5-251FS.
  • [29] Climate Policy Watcher, Electric Furnace Vitrification System, https://www.climate-policy-watcher.org/industrial-wastes/figure-5-electric-furnace-vitrification-system-courtesy-of-usepa.html, (Nisan 2021).
  • [30] Bernardo, E. ve Dal Maschio, R. (2011). Glass–ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses. Waste Management, 31(11), 2245–2252.
  • [31] Vernaz, E., Gin, S. ve Veyer, C. (2012). Waste Glass. Comprehensive Nuclear Materials, 5, 451–483.
  • [32] Borowski, G. (2012). Suitability Tests of Fly Ashes Vitrification from Sewage Sludge Incineration. Archives of Environmental Protection, 38(2).
  • [33] Chinnam, R.K., Francis, A.A., Will, J., Bernardo, E. ve Boccaccini, A.R. (2013). Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. J. Non Cryst. Solids, 365, 63–74.
  • [34] Garcia-Valles, M., Avila, G., Martinez, S., Terradas, R. ve Nogués, J. M. (2007). Heavy metal-rich wastes sequester in mineral phases through a glass–ceramic process. Chemosphere, 68(10), 1946–1953.
  • [35] Silva, A. C., Mello-Castanho, S., Guitian, F., Montero, I., Esteban-Cubillo, A., Sobrados, I., Sanz, J. ve Moya, J. S. (2008). Incorporation of Galvanic Waste (Cr, Ni, Cu, Zn, Pb) in a Soda–Lime–Borosilicate Glass. Journal of the American Ceramic Society, 91(4), 1300–1305.
  • [36] Pan, D. A., Li, L. J., Yang, J., Bu, J. B., Guo, B., Liu, B., Zhang, S. G. ve Volinsky, A. A. (2015). Production of glass–ceramics from heavy metal gypsum and pickling sludge. International Journal of Environmental Science and Technology, 12(9), 3047–3052.
  • [37] Özdemir, Ö.D., Figen, A.K. ve Pişkin S. (2011). Utilization of Galvanic Sludge as Raw Material for Production of Glass. International Conference on Chemistry and Chemical Process, 10, 45–49.
  • [38] Yang, J., Zhang, S.-G., Pan, D.-A., Liu, B., Wu, C.-L. ve Volinsky, A. A. (2016). Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent. Rare Metals, 35(3), 269–274.
  • [39] Mymrin, V., Alekseev, K., Catai, R. E., Nagalli, A., Aibuldinov, Y. K., Bekturganov, N. S., Rose, J. L. ve Izzo, R. L. S. (2016). Red ceramics from composites of hazardous sludge with foundry sand, glass waste and acid neutralization salts. Journal of Environmental Chemical Engineering, 4(1), 753–761.
  • [40] Felisberto, R., Santos, M. C., Arcaro, S., Basegio, T. M. ve Bergmann, C. P. (2018). Assessment of environmental compatibility of glass–ceramic materials obtained from galvanic sludge and soda–lime glass residue. Process Safety and Environmental Protection, 120, 72–78.
  • [41] Starostina, I., Simonov, M., Volodchenko, A., Starostina, Y., Fomin, A. ve Fokina, E. (2018). The usage of iron-containing sludge wastes in ceramic bricks production. IOP Conference Series: Materials Science and Engineering, 365, 032066.
  • [42] Ballesteros, S., Rincón-Mora, B., Jordán, M.M. ve Rincón, J.Ma. (2019). Vitrification of a sodium chromate waste and mechanical properties of a final glass-ceramic. Materials Letters: X, 100025.
  • [43] Tan, S., Kirk, N., Marshall, M., McGann, O. ve Hand, R. J. (2019). Vitrification of an intermediate level Magnox sludge waste. Journal of Nuclear Materials, 515, 392–400.
  • [44] Anderson, M., Biggs, A. ve Winters, C. (2003). Use of two blended water industry by-product wastes as a composite substitute for traditional raw materials used in clay brick manufacture. Recycling and Reuse of Waste Materials, 417–426.
  • [45] Teixeira, S., Santos, G., Souza, A., Alessio, P., Souza, S. ve Souza, N. (2011). The effect of incorporation of a Brazilian water treatment plant sludge on the properties of ceramic materials. Appl. Clay Sci, 53 (4), 561–565.
  • [46] Kizinievič, O., Žurauskienė, R., Kizinievič, V. ve Žurauskas, R. (2013). Utilisation of sludge waste from water treatment for ceramic products. Constr. Build. Mater, 41, 464–473.
  • [47] Wolff, E., Schwabe, W.K. ve Conceição, S.V. (2015). Utilization of water treatment plant sludge in structural ceramics. J. Clean. Product, 96, 282–289.
  • [48] Weng, C.-H., Lin, D.-F. ve Chiang, P.-C. (2003). Utilization of sludge as brick materials. Adv. Environ. Res, 7 (3), 679–685.
  • [49] Mao, L., Wu, Y., Zhang, W. ve Huang, Q. (2019). The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing. Journal of Environmental Management, 231, 780–787.
  • [50] Zhang, M., Chen, C., Mao, L. ve Wu, Q. (2018). Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation. Construction and Building Materials, 159, 27–36.
  • [51] Gargori, C., Prim, S. R., LLusar, M., Folgueras, M. V. ve Monrós, G. (2018). Recycling of Cr/Ni/Cu plating wastes as black ceramic pigments. Materials Letters, 218, 341–345.
  • [52] Mitiu, M.A., Marcus, M.I., Vlad, M. ve Balaceanu, C.M. (2018). Stability of Ceramic Glazes Obtained by Valorification of Anorganic Pigments Extracted from Electroplating Sludge. Revista de Chimie, 69(3), 571–574.
  • [53] Carneiro, J., Tobaldi, D. M., Capela, M. N., Novais, R. M., Seabra, M. P. ve Labrincha, J. A. (2018). Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Waste Management, 80, 371–378.
  • [54] Chou, I.-C., Kuo, Y.-M., Lin, C., Wang, J.-W., Wang, C.-T. ve Chang-Chien, G.-P. (2012). Electroplating sludge metal recovering with vitrification using mineral powder additive. Resources, Conservation and Recycling, 58, 45–49.
  • [55] Huang, R., Huang, K.-L., Lin, Z.-Y., Wang, J.-W., Lin, C. ve Kuo, Y.-M. (2013). Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. Journal of Environmental Management, 129, 586–592.
  • [56] Al Hoseny, N. F., Amin, S. K., Fouad, M. M. K. ve Abadir, M. F. (2018). Reuse of ceramic sludge in the production of vitrified clay pipes. Ceramics International, 44(11), 12420–12425.
  • [57] Nandi, V. S., Raupp-Pereira, F., Montedo, O. R. K. ve Oliveira, A. P. N. (2015). The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. Journal of Cleaner Production, 86, 461–470.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Bengisu Bozkurt 0000-0001-6127-3211

Zerrin Günkaya 0000-0002-7553-9129

Aysun Özkan 0000-0003-1036-7570

Göktuğ Günkaya 0000-0002-0821-7170

Mufide Banar 0000-0003-2795-6208

Project Number Eskişehir Teknik Üniversitesi 20ADP186, TÜBİTAK 120Y059
Publication Date March 30, 2022
Published in Issue Year 2022 Volume: 34 Issue: 1

Cite

APA Bozkurt, B., Günkaya, Z., Özkan, A., Günkaya, G., et al. (2022). Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. International Journal of Advances in Engineering and Pure Sciences, 34(1), 27-37. https://doi.org/10.7240/jeps.918430
AMA Bozkurt B, Günkaya Z, Özkan A, Günkaya G, Banar M. Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. JEPS. March 2022;34(1):27-37. doi:10.7240/jeps.918430
Chicago Bozkurt, Bengisu, Zerrin Günkaya, Aysun Özkan, Göktuğ Günkaya, and Mufide Banar. “Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme”. International Journal of Advances in Engineering and Pure Sciences 34, no. 1 (March 2022): 27-37. https://doi.org/10.7240/jeps.918430.
EndNote Bozkurt B, Günkaya Z, Özkan A, Günkaya G, Banar M (March 1, 2022) Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. International Journal of Advances in Engineering and Pure Sciences 34 1 27–37.
IEEE B. Bozkurt, Z. Günkaya, A. Özkan, G. Günkaya, and M. Banar, “Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme”, JEPS, vol. 34, no. 1, pp. 27–37, 2022, doi: 10.7240/jeps.918430.
ISNAD Bozkurt, Bengisu et al. “Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme”. International Journal of Advances in Engineering and Pure Sciences 34/1 (March 2022), 27-37. https://doi.org/10.7240/jeps.918430.
JAMA Bozkurt B, Günkaya Z, Özkan A, Günkaya G, Banar M. Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. JEPS. 2022;34:27–37.
MLA Bozkurt, Bengisu et al. “Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme”. International Journal of Advances in Engineering and Pure Sciences, vol. 34, no. 1, 2022, pp. 27-37, doi:10.7240/jeps.918430.
Vancouver Bozkurt B, Günkaya Z, Özkan A, Günkaya G, Banar M. Endüstriyel Atık Çamurlardan Elde Edilen Vitrifiye Ürünlerle İlgili Bir Değerlendirme. JEPS. 2022;34(1):27-3.