Elektrikli Araçlarda Batarya Kutusu İmali İçin Termal Özellikleri İyileştirilmiş Hibrit Polimer Kompozitlerin Geliştirilmesi ve Mekanik Özelliklerinin İncelenmesi
Year 2024,
Volume: 36 Issue: 3, 224 - 234, 26.09.2024
Emrullah Cebe
,
Alaeddin Burak İrez
Abstract
Elektrikli araçlar, ulaşımın sürdürülebilirliği için oldukça önemlidir ve içten yanmalı motorlu araçlar gibi fosil yakıtlar kullanmadıklarından çevreye zararlı gaz salınımında bulunmamaktadırlar. Elektrikli araçların bu özelliğinden faydalanmak için kullanımlarını teşvik etmek amacıyla çeşitli çalışmalar yapılmaktadır. Bu çalışmada, elektrikli araçlardaki batarya kutusu üretimi için termal iletkenliği ve darbe direnci iyileştirilmiş polimer esaslı hibrit kompozit bir malzeme geliştirilmesi amaçlanmıştır. Yaygın kullanımı ve üretim kolaylığı nedeniyle matris olarak Poliamid 6 (PA6) kullanılmış, termal iletkenliğini artırmak için ise hegzagonal bor nitrür (hBN) ve grafen nanopulcuk (GnP) kullanılmıştır. Bu malzemelere ek olarak, zeminden kaynaklanabilecek potansiyel darbe hasarı durumunda dayanıklılığı artırmak için bir stiren-etilen-bütadien-stiren (SEBS) elastomer takviyesi eklenmiştir. Kompozitler ekstrüzyon ve enjeksiyon kalıplama ile üretildikten sonra, numunelerin mekanik testleri; üç nokta eğme ve Izod darbe dayanımı testleriyle yapılmıştır. Kütlece %30 hBN kullanılması durumunda eğilme dayanımı ve modülünde sırasıyla %22 ve %101.1’lik bir iyileşme sağlanmıştır. Kütlece %2.5 GnP kullanılması durumunda eğilme dayanımı ve modülü değerlerinde sırasıyla %14.1 ve %55.6’lık bir iyileşme sağlanmıştır. Kütlece %5 SEBS kullanıldığında darbe dayanımını değerinin %58.5 arttığı tespit edilmiştir. Ayrıca termal karakterizasyon için diferansiyel taramalı kalorimetre analizleri ve termal iletkenlik ölçümleri yapılmıştır. Kütlece %30 hBN eklendiğinde termal iletkenliğin %194.3 arttığını görülmüştür. Daha sonra, malzemelerde hasar mekanizmalarını incelemek için kırılma yüzeyleri taramalı elektron mikroskobuyla (SEM) incelenmiştir. Son olarak, Halpin Tsai (HT) yaklaşımı kullanılarak kompozitlerin mikromekanik modelleri kurulmuştur. Bu modellerin doğruluğunu tespit etmek için ise deneysel verilerle karşılaştırma yapılmıştır.
Supporting Institution
İTÜ Bilimsel Projeler Birimi
Project Number
MYL-2022-44226
Thanks
Bu akademik çalışma İTÜ Bilimsel Projeler Birimi MYL-2022-44226 kodlu proje kapsamında desteklenmiştir. İmalat esnasında kullanılan ATABOND-1550 malzeme desteği için TMB POLYMER firmasından Mehmet Baskın’a, PA6 desteği için Safic-Alcan firmasından Mustafa Arslan’a teşekkür ederiz.
References
- Boden, T., Andres, B., & Marland, G. (1751). Global CO2 Emissions from Fossil-Fuel Burning. Cement manufacture, and gas flaring, 2006, 37831-6335.
- Farzaneh, F., & Jung, S. (2023). Lifecycle carbon footprint comparison between internal combustion engine versus electric transit vehicle: A case study in the US. Journal of Cleaner Production, 390, 136111.
- Abnett, K. (2023). EU countries approve 2035 phaseout of CO2-emitting cars. Reuters, Mar, 29.
- Anadolu Ajansı. (2023). Türkiye'nin ilk batarya fabrikasının inşasına Bursa'da başlanacak https://www.aa.com.tr/tr/bilim-teknoloji/turkiyenin-ilk-batarya-fabrikasinin-insasina-bursada-baslanacak/2879229
- Wang, Z., Zhang, K., Zhang, B., Tong, Z., Mao, S., Bai, H., & Lu, Y. (2022). Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites. Green Energy & Environment, 7(6), 1401-1410.
- Börner, M., Friesen, A., Grützke, M., Stenzel, Y. P., Brunklaus, G., Haetge, J., ... & Winter, M. (2017). Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries. Journal of power sources, 342, 382-392.
- Bala, A., & Chaitanya Kamaraju, M. (2020). Design and optimization of battery housing in electric cars.
- Li, C., Zhang, H., Zhang, X., Zhang, Z., Li, N., Liu, Y., ... & Sun, J. (2022). Construction of bi-continuous structure in fPC/ABS-hBN (GB) composites with simultaneous enhanced thermal conductivity and mechanical properties. Composites Science and Technology, 223, 109437.
- Gu, J., Meng, X., Tang, Y., Li, Y., Zhuang, Q., & Kong, J. (2017). Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Composites Part A: Applied Science and Manufacturing, 92, 27-32.
- Nazir, M. T., Phung, B. T., Hoffman, M., Yu, S., & Li, S. (2017). Micro-AlN/nano-SiO2 co-filled silicone rubber composites with high thermal stability and excellent dielectric properties. Materials Letters, 209, 421-424.
- Zhang, Y., & Park, S. J. (2018). In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Composites Part A: Applied Science and Manufacturing, 112, 40-48.
- Dai, P., Jiao, Y., Ma, H., Zeng, X., Lu, Y., Wang, L., ... & Zhai, M. (2019). Radiation synthesis of polysilane‐modified graphene oxide for improving thermal conductivity and mechanical properties of silicone rubber. Journal of Applied Polymer Science, 136(29), 47776.
- Temel, U. N. (2019). Passive thermal management of a simulated battery pack at different climate conditions. Applied Thermal Engineering, 158, 113796.
- Li, C., Zhang, H., Zhang, X., Zhang, Z., Li, N., Liu, Y., ... & Sun, J. (2022). Construction of bi-continuous structure in fPC/ABS-hBN (GB) composites with simultaneous enhanced thermal conductivity and mechanical properties. Composites Science and Technology, 223, 109437.
- Yuan, C., Li, J., Lindsay, L., Cherns, D., Pomeroy, J. W., Liu, S., ... & Kuball, M. (2019). Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Communications physics, 2(1), 43.
- Gong, Y., Zhou, W., Kou, Y., Xu, L., Wu, H., & Zhao, W. (2017). Heat conductive h‐BN/CTPB/epoxy with enhanced dielectric properties for potential high‐voltage applications. High Voltage, 2(3), 172-178.
- Okan, C., Kaya, R., Irez, A. B., & Cebe, E. (2022). Effect of the Graphene Nanoplatelets (GnPs) on the Mechanical Properties in Recycled PP-Based Hybrid Composites. In Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3: Proceedings of the 2021 Annual Conference on Experimental and Applied Mechanics (pp. 23-28). Springer International Publishing.
- Gao, X., Qu, C., & Fu, Q. (2004). Toughening mechanism in polyoxymethylene/thermoplastic polyurethane blends. Polymer international, 53(11), 1666-1671.
- Irez, A. B., Okan, C., Kaya, R., & Cebe, E. (2022). Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets. Sustainable Materials and Technologies, 31, e00389.
- Seyhan, A., Irez, A. B., & Polat, Y. (2022, June). Development of a Polyamide 6-Based Composite Material for UAV Propellers. In Society for Experimental Mechanics Annual Conference and Exposition (pp. 73-77). Cham: Springer International Publishing.
- Cui, Shaoying, Pingfu Wei, and Li Li. "Preparation of poly (propylene carbonate)/graphite nanoplates-spherical nanocrystal cellulose composite with improved glass transition temperature and electrical conductivity." Composites science and technology 168 (2018): 63-73.
- Ma, J., Meng, Q., Zaman, I., Zhu, S., Michelmore, A., Kawashima, N., ... & Kuan, H. C. (2014). Development of polymer composites using modified, high-structural integrity graphene platelets. Composites Science and Technology, 91, 82-90.
- Rasul, M. G., Kiziltas, A., Arfaei, B., & Shahbazian-Yassar, R. (2021). 2D boron nitride nanosheets for polymer composite materials. npj 2D Materials and Applications, 5(1), 56.
- Madarvoni, Srivatsava, and Rama PS Sreekanth. "Mechanical characterization of graphene—hexagonal boron Nitride-Based kevlar–carbon hybrid fabric nanocomposites." Polymers 14.13 (2022): 2559.
- Gul, S., Arican, S., Cansever, M., Beylergil, B., Yildiz, M., & Saner Okan, B. (2022). Design of highly thermally conductive hexagonal boron nitride-reinforced PEEK composites with tailored heat conduction through-plane and rheological behaviors by a scalable extrusion. ACS Applied Polymer Materials, 5(1), 329-341.
- Saha, M., Tambe, P., Pal, S., Kubade, P., Manivasagam, G., Anthony Xavior, M., & Umashankar, V. (2015). Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites. Composite Interfaces, 22(7), 611-627.
- Bilisik, K., & Akter, M. (2022). Polymer nanocomposites based on graphite nanoplatelets (GNPs): a review on thermal-electrical conductivity, mechanical and barrier properties. Journal of Materials Science, 57(15), 7425-7480.
- Inuwa, I. M., Hassan, A., Samsudin, S. A., Mohamad Kassim, M. H., & Jawaid, M. (2014). Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polymer Composites, 35(10), 2029-2035.
- Irez, A. B., Miskioglu, I., & Bayraktar, E. (2018). Mechanical characterization of epoxy–scrap rubber based composites reinforced with nano graphene. In Mechanics of Composite and Multi-functional Materials, Volume 6: Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics (pp. 45-57). Springer International Publishing.
- Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117-131.
- Nakhaei MR, Naderi G, Ghoreishy MHR. Fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites by essential work of fracture. Iran Polym J (English Ed. 2021;30(9):975-987. doi:10.1007/s13726-021-00950-9
- Xiang, J., & Drzal, L. T. (2011). Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon, 49(3), 773-778.
- Kalaitzidou, K., Fukushima, H., Miyagawa, H., & Drzal, L. T. (2007). Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin‐Tsai and Tandon‐Weng models. Polymer Engineering & Science, 47(11), 1796-1803.
- Irez, A. B., & Ramazan, K. A. Y. A. (2022). Geri Dönüştürülmüş PP Bazlı Nano Grafen Takviyeli Hibrit Kompozitlerin Geliştirilmesi ve Mekanik Özelliklerinin Mikromekanik Yöntemler ile Belirlenmesi. International Journal of Advances in Engineering and Pure Sciences, 34(4), 569-579.
- King, J. A., Klimek, D. R., Miskioglu, I., & Odegard, G. M. (2013). Mechanical properties of graphene nanoplatelet/epoxy composites. Journal of applied polymer science, 128(6), 4217-4223.
- Mokoena, T. E., Magagula, S. I., Mochane, M. J., & Mokhena, T. C. (2021). Mechanical properties, thermal conductivity, and modeling of boron nitride-based polymer composites: A review. Express Polymer Letters, 15(12), 1148-1173.
- Ahmadi-Moghadam, B., & Taheri, F. (2014). Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. Journal of materials science, 49, 6180-619
Development of Hybrid Polymer Composites with Improved Thermal Properties and Investigation of Their Mechanical Properties for Battery Module Case Manufacturing in Electric Vehicles
Year 2024,
Volume: 36 Issue: 3, 224 - 234, 26.09.2024
Emrullah Cebe
,
Alaeddin Burak İrez
Abstract
In the realm of transportation sustainability, electric vehicles play a crucial role. The aim of this article was to create a hybrid composite material using polymers that would have enhanced heat conductivity and impact resistance. This material would be used to manufacture battery casings for electric cars. Polyamide 6 (PA6) was selected as the matrix material owing to its convenient manufacturing process and extensive application. Additionally, hexagonal boron nitride (hBN) and graphene nanoplatelets (GnP) were incorporated to enhance the thermal conductivity of the matrix. Furthermore, to enhance the structural integrity against potential ground impact damage, a styrene-ethylene-butylene-styrene (SEBS) elastomer reinforcement was used alongside the aforementioned elements. Following the extrusion and injection molding processes, the composites underwent mechanical testing using three-point bending and Izod impact tests. When 30 wt.% hBN was added, there was a 22% improvement in flexural strength and a 101.1% improvement in flexural modulus. Similarly, when 2.5 wt.% GnP was added, there was a 14.1% improvement in flexural strength and a 55.6% improvement in flexural modulus. Then, thermal analyses were performed through Differential Scanning Calomerimetry (DSC) and thermal conductivity measurements. Furthermore, it was observed that the addition of 30 wt.% hBN resulted in a significant increase of 194.3% in thermal conductivity. Subsequently, the fracture surfaces were subjected to scanning electron microscopy (SEM) in order to investigate the underlying causes of material damage subsequent to failure. The Halpin-Tsai (HT) micro-mechanical model was used to estimate the modulus of the composites.
Project Number
MYL-2022-44226
References
- Boden, T., Andres, B., & Marland, G. (1751). Global CO2 Emissions from Fossil-Fuel Burning. Cement manufacture, and gas flaring, 2006, 37831-6335.
- Farzaneh, F., & Jung, S. (2023). Lifecycle carbon footprint comparison between internal combustion engine versus electric transit vehicle: A case study in the US. Journal of Cleaner Production, 390, 136111.
- Abnett, K. (2023). EU countries approve 2035 phaseout of CO2-emitting cars. Reuters, Mar, 29.
- Anadolu Ajansı. (2023). Türkiye'nin ilk batarya fabrikasının inşasına Bursa'da başlanacak https://www.aa.com.tr/tr/bilim-teknoloji/turkiyenin-ilk-batarya-fabrikasinin-insasina-bursada-baslanacak/2879229
- Wang, Z., Zhang, K., Zhang, B., Tong, Z., Mao, S., Bai, H., & Lu, Y. (2022). Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites. Green Energy & Environment, 7(6), 1401-1410.
- Börner, M., Friesen, A., Grützke, M., Stenzel, Y. P., Brunklaus, G., Haetge, J., ... & Winter, M. (2017). Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries. Journal of power sources, 342, 382-392.
- Bala, A., & Chaitanya Kamaraju, M. (2020). Design and optimization of battery housing in electric cars.
- Li, C., Zhang, H., Zhang, X., Zhang, Z., Li, N., Liu, Y., ... & Sun, J. (2022). Construction of bi-continuous structure in fPC/ABS-hBN (GB) composites with simultaneous enhanced thermal conductivity and mechanical properties. Composites Science and Technology, 223, 109437.
- Gu, J., Meng, X., Tang, Y., Li, Y., Zhuang, Q., & Kong, J. (2017). Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Composites Part A: Applied Science and Manufacturing, 92, 27-32.
- Nazir, M. T., Phung, B. T., Hoffman, M., Yu, S., & Li, S. (2017). Micro-AlN/nano-SiO2 co-filled silicone rubber composites with high thermal stability and excellent dielectric properties. Materials Letters, 209, 421-424.
- Zhang, Y., & Park, S. J. (2018). In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Composites Part A: Applied Science and Manufacturing, 112, 40-48.
- Dai, P., Jiao, Y., Ma, H., Zeng, X., Lu, Y., Wang, L., ... & Zhai, M. (2019). Radiation synthesis of polysilane‐modified graphene oxide for improving thermal conductivity and mechanical properties of silicone rubber. Journal of Applied Polymer Science, 136(29), 47776.
- Temel, U. N. (2019). Passive thermal management of a simulated battery pack at different climate conditions. Applied Thermal Engineering, 158, 113796.
- Li, C., Zhang, H., Zhang, X., Zhang, Z., Li, N., Liu, Y., ... & Sun, J. (2022). Construction of bi-continuous structure in fPC/ABS-hBN (GB) composites with simultaneous enhanced thermal conductivity and mechanical properties. Composites Science and Technology, 223, 109437.
- Yuan, C., Li, J., Lindsay, L., Cherns, D., Pomeroy, J. W., Liu, S., ... & Kuball, M. (2019). Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Communications physics, 2(1), 43.
- Gong, Y., Zhou, W., Kou, Y., Xu, L., Wu, H., & Zhao, W. (2017). Heat conductive h‐BN/CTPB/epoxy with enhanced dielectric properties for potential high‐voltage applications. High Voltage, 2(3), 172-178.
- Okan, C., Kaya, R., Irez, A. B., & Cebe, E. (2022). Effect of the Graphene Nanoplatelets (GnPs) on the Mechanical Properties in Recycled PP-Based Hybrid Composites. In Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3: Proceedings of the 2021 Annual Conference on Experimental and Applied Mechanics (pp. 23-28). Springer International Publishing.
- Gao, X., Qu, C., & Fu, Q. (2004). Toughening mechanism in polyoxymethylene/thermoplastic polyurethane blends. Polymer international, 53(11), 1666-1671.
- Irez, A. B., Okan, C., Kaya, R., & Cebe, E. (2022). Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets. Sustainable Materials and Technologies, 31, e00389.
- Seyhan, A., Irez, A. B., & Polat, Y. (2022, June). Development of a Polyamide 6-Based Composite Material for UAV Propellers. In Society for Experimental Mechanics Annual Conference and Exposition (pp. 73-77). Cham: Springer International Publishing.
- Cui, Shaoying, Pingfu Wei, and Li Li. "Preparation of poly (propylene carbonate)/graphite nanoplates-spherical nanocrystal cellulose composite with improved glass transition temperature and electrical conductivity." Composites science and technology 168 (2018): 63-73.
- Ma, J., Meng, Q., Zaman, I., Zhu, S., Michelmore, A., Kawashima, N., ... & Kuan, H. C. (2014). Development of polymer composites using modified, high-structural integrity graphene platelets. Composites Science and Technology, 91, 82-90.
- Rasul, M. G., Kiziltas, A., Arfaei, B., & Shahbazian-Yassar, R. (2021). 2D boron nitride nanosheets for polymer composite materials. npj 2D Materials and Applications, 5(1), 56.
- Madarvoni, Srivatsava, and Rama PS Sreekanth. "Mechanical characterization of graphene—hexagonal boron Nitride-Based kevlar–carbon hybrid fabric nanocomposites." Polymers 14.13 (2022): 2559.
- Gul, S., Arican, S., Cansever, M., Beylergil, B., Yildiz, M., & Saner Okan, B. (2022). Design of highly thermally conductive hexagonal boron nitride-reinforced PEEK composites with tailored heat conduction through-plane and rheological behaviors by a scalable extrusion. ACS Applied Polymer Materials, 5(1), 329-341.
- Saha, M., Tambe, P., Pal, S., Kubade, P., Manivasagam, G., Anthony Xavior, M., & Umashankar, V. (2015). Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites. Composite Interfaces, 22(7), 611-627.
- Bilisik, K., & Akter, M. (2022). Polymer nanocomposites based on graphite nanoplatelets (GNPs): a review on thermal-electrical conductivity, mechanical and barrier properties. Journal of Materials Science, 57(15), 7425-7480.
- Inuwa, I. M., Hassan, A., Samsudin, S. A., Mohamad Kassim, M. H., & Jawaid, M. (2014). Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polymer Composites, 35(10), 2029-2035.
- Irez, A. B., Miskioglu, I., & Bayraktar, E. (2018). Mechanical characterization of epoxy–scrap rubber based composites reinforced with nano graphene. In Mechanics of Composite and Multi-functional Materials, Volume 6: Proceedings of the 2017 Annual Conference on Experimental and Applied Mechanics (pp. 45-57). Springer International Publishing.
- Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117-131.
- Nakhaei MR, Naderi G, Ghoreishy MHR. Fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites by essential work of fracture. Iran Polym J (English Ed. 2021;30(9):975-987. doi:10.1007/s13726-021-00950-9
- Xiang, J., & Drzal, L. T. (2011). Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon, 49(3), 773-778.
- Kalaitzidou, K., Fukushima, H., Miyagawa, H., & Drzal, L. T. (2007). Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin‐Tsai and Tandon‐Weng models. Polymer Engineering & Science, 47(11), 1796-1803.
- Irez, A. B., & Ramazan, K. A. Y. A. (2022). Geri Dönüştürülmüş PP Bazlı Nano Grafen Takviyeli Hibrit Kompozitlerin Geliştirilmesi ve Mekanik Özelliklerinin Mikromekanik Yöntemler ile Belirlenmesi. International Journal of Advances in Engineering and Pure Sciences, 34(4), 569-579.
- King, J. A., Klimek, D. R., Miskioglu, I., & Odegard, G. M. (2013). Mechanical properties of graphene nanoplatelet/epoxy composites. Journal of applied polymer science, 128(6), 4217-4223.
- Mokoena, T. E., Magagula, S. I., Mochane, M. J., & Mokhena, T. C. (2021). Mechanical properties, thermal conductivity, and modeling of boron nitride-based polymer composites: A review. Express Polymer Letters, 15(12), 1148-1173.
- Ahmadi-Moghadam, B., & Taheri, F. (2014). Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. Journal of materials science, 49, 6180-619