Comparison of Sound Insulation Performance of Water Drop and Trapezoidal Sound Barriers
Year 2024,
Volume: 36 Issue: 4, 337 - 347, 22.12.2024
Arif Doğan
,
Ahmet Aslandağ
,
Paşa Yayla
Abstract
With increasing urbanization and industrialization, noise pollution has become a significant environmental issue. This study compares the sound insulation performance of two different sound barrier designs: water drop and trapezoidal. COMSOL Multiphysics software for computational simulations is used to calculate sound transmission loss (STL). The results indicated that the water drop design provides more effective sound insulation compared to the trapezoidal model. Additionally, economic analyses suggest that the water drop design may offer long-term advantages despite higher initial costs.
References
- Moser, M. (2004). Engineering Acoustics: An Introduction to Noise Control. Berlin, Germany: Springer Science.
- Raichel, D. R. (2006). The Science and Applications of Acoustics (2nd ed.). New York, USA: Springer Science.
- May, D. N., & Osman, N. M. (1980). Highway noise barriers: New shapes. Journal of Sound and Vibration, 71(1), 73-101.
- Ekici, I., & Bougdah, H. (2003). A review of research on environmental noise barriers. Journal of Environmental Engineering, 129(12), 1065-1073.
- Degischer, H.-P., & Kriszt, B. (Eds.). (2002). Handbook of Cellular Materials: Production, Processing, Applications. Weinheim, Germany: WILEY-VCH.
- Le, C. H. (2010). Developments in topology and shape optimization. Ph.D. Thesis, University of Illinois at Urbana-Champaign.
- Eschenauer, H. (Ed.). (2006). IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Dordrecht, Netherlands: Springer.
- Joshi, H. R. (2013). Finite Element Analysis of Effective Mechanical Properties, Vibration, and Acoustic Performance of Auxetic Chiral Core Sandwich Structures. M.Sc. Thesis, Purdue University.
- Ramnath, B. V., Alagarraja, K., & Elanchezhian, C. (2019). Influence of fiber orientation on the mechanical properties of GFRP composites. Materials Today: Proceedings, 16, 859-864.
- Sayahlatifi, S., Rahimi, G., & Bokaei, A. (2021). An investigation into the acoustic performance of sandwich structures with auxetic cores. Journal of Sandwich Structures and Materials, 23, 94-109.
- Li, Y., Wang, F., Jia, S., Ma, X., & Zhang, Y. (2021). Influence of process parameters on the mechanical properties of fiber-reinforced polymers. Fibers and Polymers, 22, 1718-1726.
- Florence, M., Jaswin, M. A., & Pandi, A. P. (2020). Investigation of the tensile properties of fiber-reinforced polymers. Fibers and Polymers, 21, 1152-1160.
- Arunkumar, M. P., Pitchaimani, J., Gangadharan, K. V., & Babu, M. C. L. (2017). Dynamic analysis of sandwich structures with auxetic core. Journal of Sandwich Structures and Materials, 19, 26-42.
- Griese, D., Summers, J. D., & Thompson, L. (2015). Structural health monitoring of sandwich composites using vibration analysis. Journal of Vibration and Acoustics, 137, 021011.
- Reiter, P., Wehr, R., & Ziegelwanger, H. (2017). Simulation and measurement of noise barrier sound-reflection properties. Applied Acoustics, 121, 11-21.
- Moore, J. A., & Lyon, R. H. (1991). Sound transmission loss characteristics of sandwich panel constructions. Journal of the Acoustical Society of America, 89(3), 1544-1552.
- Halliwell, R. E., & Warnock, A. C. C. (1985). Sound transmission loss: Comparison of conventional techniques with sound intensity techniques. The Journal of the Acoustical Society of America, 77(6), 2094-2103.
- Garai, M., & Guidorzi, P. (2015). Sound reflection measurements on noise barriers in critical conditions. Applied Acoustics, 98, 103-109.
- Asdrubali, F., & Pispola, G. (2007). Properties of transparent sound-absorbing panels for use in noise barriers. Journal of Sound and Vibration, 302(4-5), 840-854.
- Laxmi, V., Thakre, C., & Vijay, R. (2022). Evaluation of noise barriers based on geometries and materials: A review. Environmental Science and Pollution Research, 29(10), 1729-1745.
- Xiong, W. 2010. Applications of COMSOL Multiphysics Software to Heat Transfer Processes, Master Thesis, Department of Industrial Management, Arcada University of Applied Sciences, Helsinki.
- Song, Y., Wen, J., Tian, H., Lu, X., Li, Z., & Feng, L. (2020). Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study. Journal of Sound and Vibration, 486, 115559.
- Khrystoslavenko, O., & Grubliauskas, R. (2017). Simulation of room acoustics using COMSOL Multiphysics. In Proceedings of the 20th Conference for Junior Researchers “Science – Future of Lithuania” Environmental Protection Engineering (Article No. aplinka.06). Vilnius, Lithuania: Vilnius Gediminas Technical University.
- Acoustic–Structure Interaction, https://www.comsol.com/model/download/1182151/models.aco.acoustic_structure.pdf (Access date: 12.09.2024)
- Herring Jensen, M. J. (2020). Modeling sound transmission loss through a concrete wall, https://www.comsol.com/model/download/1177511/models.aco.sound_transmission_loss_concrete.pdf. (Access date: 12.09.2024)
- Saadeghvaziri, M. A., & Macbain, K. (1998). Sound barrier applications of recycled plastics. Transportation Research Record: Journal of the Transportation Research Board, 1626(1), 83-89.
- Bolton, J. S., Shiau, N.-M., & Kang, Y. J. (1995). Sound transmission through multi-panel structures lined with elastic porous materials. Journal of Sound and Vibration, 191(3), 317-347.
- Oh, Y. K., & Kim, H. G. (2023). A preliminary study on the measurement method for determining the absorption coefficient of sound barrier panels [방음판의 흡음률 측정방법 제안을 위한 기초 연구]. The Journal of the Acoustical Society of Korea, 42(2), 152-160.
- Oh, Y. K. (2022). A study on the standard for determining airborne sound insulation performance of sound barrier panels [방음판의 음향투과손실 측정규격에 관한 연구]. Journal of Architectural Acoustics, 35(3), 123-135.
- Wang, D., Xie, S., Feng, Z., Liu, X., & Li, Y. (2020). Investigating the effect of dimension parameters on sound transmission losses in Nomex honeycomb sandwich. Applied Sciences, 10(9), 3109.
Comparison of Sound Insulation Performance of Water Drop and Trapezoidal Sound Barriers
Year 2024,
Volume: 36 Issue: 4, 337 - 347, 22.12.2024
Arif Doğan
,
Ahmet Aslandağ
,
Paşa Yayla
Abstract
With increasing urbanization and industrialization, noise pollution has become a significant environmental issue. This study compares the sound insulation performance of two different sound barrier designs: water drop and trapezoidal. COMSOL Multiphysics software for computational simulations is used to calculate sound transmission loss (STL). The results indicated that the water drop design provides more effective sound insulation compared to the trapezoidal model. Additionally, economic analyses suggest that the water drop design may offer long-term advantages despite higher initial costs.
References
- Moser, M. (2004). Engineering Acoustics: An Introduction to Noise Control. Berlin, Germany: Springer Science.
- Raichel, D. R. (2006). The Science and Applications of Acoustics (2nd ed.). New York, USA: Springer Science.
- May, D. N., & Osman, N. M. (1980). Highway noise barriers: New shapes. Journal of Sound and Vibration, 71(1), 73-101.
- Ekici, I., & Bougdah, H. (2003). A review of research on environmental noise barriers. Journal of Environmental Engineering, 129(12), 1065-1073.
- Degischer, H.-P., & Kriszt, B. (Eds.). (2002). Handbook of Cellular Materials: Production, Processing, Applications. Weinheim, Germany: WILEY-VCH.
- Le, C. H. (2010). Developments in topology and shape optimization. Ph.D. Thesis, University of Illinois at Urbana-Champaign.
- Eschenauer, H. (Ed.). (2006). IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Dordrecht, Netherlands: Springer.
- Joshi, H. R. (2013). Finite Element Analysis of Effective Mechanical Properties, Vibration, and Acoustic Performance of Auxetic Chiral Core Sandwich Structures. M.Sc. Thesis, Purdue University.
- Ramnath, B. V., Alagarraja, K., & Elanchezhian, C. (2019). Influence of fiber orientation on the mechanical properties of GFRP composites. Materials Today: Proceedings, 16, 859-864.
- Sayahlatifi, S., Rahimi, G., & Bokaei, A. (2021). An investigation into the acoustic performance of sandwich structures with auxetic cores. Journal of Sandwich Structures and Materials, 23, 94-109.
- Li, Y., Wang, F., Jia, S., Ma, X., & Zhang, Y. (2021). Influence of process parameters on the mechanical properties of fiber-reinforced polymers. Fibers and Polymers, 22, 1718-1726.
- Florence, M., Jaswin, M. A., & Pandi, A. P. (2020). Investigation of the tensile properties of fiber-reinforced polymers. Fibers and Polymers, 21, 1152-1160.
- Arunkumar, M. P., Pitchaimani, J., Gangadharan, K. V., & Babu, M. C. L. (2017). Dynamic analysis of sandwich structures with auxetic core. Journal of Sandwich Structures and Materials, 19, 26-42.
- Griese, D., Summers, J. D., & Thompson, L. (2015). Structural health monitoring of sandwich composites using vibration analysis. Journal of Vibration and Acoustics, 137, 021011.
- Reiter, P., Wehr, R., & Ziegelwanger, H. (2017). Simulation and measurement of noise barrier sound-reflection properties. Applied Acoustics, 121, 11-21.
- Moore, J. A., & Lyon, R. H. (1991). Sound transmission loss characteristics of sandwich panel constructions. Journal of the Acoustical Society of America, 89(3), 1544-1552.
- Halliwell, R. E., & Warnock, A. C. C. (1985). Sound transmission loss: Comparison of conventional techniques with sound intensity techniques. The Journal of the Acoustical Society of America, 77(6), 2094-2103.
- Garai, M., & Guidorzi, P. (2015). Sound reflection measurements on noise barriers in critical conditions. Applied Acoustics, 98, 103-109.
- Asdrubali, F., & Pispola, G. (2007). Properties of transparent sound-absorbing panels for use in noise barriers. Journal of Sound and Vibration, 302(4-5), 840-854.
- Laxmi, V., Thakre, C., & Vijay, R. (2022). Evaluation of noise barriers based on geometries and materials: A review. Environmental Science and Pollution Research, 29(10), 1729-1745.
- Xiong, W. 2010. Applications of COMSOL Multiphysics Software to Heat Transfer Processes, Master Thesis, Department of Industrial Management, Arcada University of Applied Sciences, Helsinki.
- Song, Y., Wen, J., Tian, H., Lu, X., Li, Z., & Feng, L. (2020). Vibration and sound properties of metamaterial sandwich panels with periodically attached resonators: Simulation and experiment study. Journal of Sound and Vibration, 486, 115559.
- Khrystoslavenko, O., & Grubliauskas, R. (2017). Simulation of room acoustics using COMSOL Multiphysics. In Proceedings of the 20th Conference for Junior Researchers “Science – Future of Lithuania” Environmental Protection Engineering (Article No. aplinka.06). Vilnius, Lithuania: Vilnius Gediminas Technical University.
- Acoustic–Structure Interaction, https://www.comsol.com/model/download/1182151/models.aco.acoustic_structure.pdf (Access date: 12.09.2024)
- Herring Jensen, M. J. (2020). Modeling sound transmission loss through a concrete wall, https://www.comsol.com/model/download/1177511/models.aco.sound_transmission_loss_concrete.pdf. (Access date: 12.09.2024)
- Saadeghvaziri, M. A., & Macbain, K. (1998). Sound barrier applications of recycled plastics. Transportation Research Record: Journal of the Transportation Research Board, 1626(1), 83-89.
- Bolton, J. S., Shiau, N.-M., & Kang, Y. J. (1995). Sound transmission through multi-panel structures lined with elastic porous materials. Journal of Sound and Vibration, 191(3), 317-347.
- Oh, Y. K., & Kim, H. G. (2023). A preliminary study on the measurement method for determining the absorption coefficient of sound barrier panels [방음판의 흡음률 측정방법 제안을 위한 기초 연구]. The Journal of the Acoustical Society of Korea, 42(2), 152-160.
- Oh, Y. K. (2022). A study on the standard for determining airborne sound insulation performance of sound barrier panels [방음판의 음향투과손실 측정규격에 관한 연구]. Journal of Architectural Acoustics, 35(3), 123-135.
- Wang, D., Xie, S., Feng, Z., Liu, X., & Li, Y. (2020). Investigating the effect of dimension parameters on sound transmission losses in Nomex honeycomb sandwich. Applied Sciences, 10(9), 3109.