Reflection from the front glass of solar modules causes over 4% optical loss leading to a significant decrease in module efficiency. Single layer solution gelation (sol-gel) anti-reflective (AR) coatings are effective over a narrow range of wavelengths, whereas reflection losses can be reduced over a broader wavelength when multilayer broadband AR coatings are applied. In this work, three different multilayer AR coatings including 4-layer SiO2/ZrO2, 4-layer SiO2/ITO, and 6-layer SiO2/ZrO2 were deposited using magnetron sputtering. The abrasion resistance is important because the coatings will be subject to regular cleaning cycles. A variety of abraders including Felt pad, CS-10 and CS-8 under different loads are used. The optical performance and durability of these coatings were analyzed using a spectrophotometer, optical microscope, scanning electron microscope, and scanning white light interferometer. No damage was observed after abrasion of the coatings with a felt pad under 1 and 2 N loads. However, there was a slight increase in Weighted Average Reflection. When coatings were tested with CS-10 and CS-8 abraders, coatings with ZrO2 resulted in higher scratch resistance in comparison to coating with ITO. However, all-dielectric broadband AR coatings are more durable and have better optical performance compared to single layer sol-gel coatings.
Primary Language | English |
---|---|
Subjects | Electrical Engineering, Material Production Technologies |
Journal Section | Research Articles |
Authors | |
Publication Date | March 31, 2022 |
Acceptance Date | December 10, 2021 |
Published in Issue | Year 2022 |
Journal of Energy Systems is the official journal of
European Conference on Renewable Energy Systems (ECRES) and
Electrical and Computer Engineering Research Group (ECERG)
Journal of Energy Systems is licensed under CC BY-NC 4.0