Effect of stator winding chording on the performance of five phase synchronous reluctance motor
Year 2024,
Volume: 8 Issue: 1, 11 - 26, 31.03.2024
Gideon Umoh
,
Desmond Obinna Obe
,
Benjamin Mama
,
Pauline Obe
,
Chikaodili Helen Ugwuıshıwu
Hyacinth Agozie Eneh
Emeka Simon Obe
Abstract
The effect of winding chording on five-phase synchronous reluctance motor (SRM) modelled in phase variables is presented. The stator winding configuration is shifted a pole pitch from a full-pitch configuration to a 54 degrees over-full-pitched configuration incorporating the effect of 3rd harmonic of the air-gap magneto-motive force in the inductance equations. The models are monitored on starting, synchronism, loading, faults and loss of synchronism. These are considered simultaneously with vector potential, rotor speed, air-gap flux linkage and winding current. The phase variable (analytical) models have been simulated by using MATLAB/Simulink software while ANSYS Maxwell software has been used to simulate the finite element model (FEM) of the motor for corresponding chording ranges for comparison on direct online starting (DOL). Under all conditions considered in the work, the detailed results are presented and very close similarity is observed between the analytical and the nearly ideal FEM model for all chording ranges and the similarity is enhanced with increase in chording angle.
References
- [1] Liu, HC, Lee, J. Optimum Design of an IE4 Line-Start Synchronous Reluctance Motor Considering Manufacturing Process Loss Effect. IEEE Transactions on Industrial Electronics, 2017; 65: 3104-3114. DOI: 10.1109/TIE.2017.2758738
- [2] Kersten, A, Liu, Y, Pehrman, D, Thiringer, T. Rotor Design of Line-Start Synchronous Reluctance Machine with Round Bars. IEEE Transactions on Industry Applications, 2019; 55: 3685-3696, DOI: 10.1109/TIA.2019.2914010
- [3] Ogbuka, CU, Nwosu, CM, Umoh, GD. A new cross-saturated torque model of highly utilized synchronous reluctance machine, Archives of Electrical Engineering. 2018; 67: 109–121, DOI: 10.24425/118995
- [4] Obe, ES, Binder, A. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics. Energy Conversion and Management, 2011; 52: 284-291. DOI: 10.1016/j.enconman.2010.06.069
- [5] S. Stipetic, S, Zarko, D, Cavar, N. Adjustment of Rated Current and Power Factor in a Synchronous Reluctance Motor Optimally Designed for Maximum Saliency Ratio. IEEE Transactions on Industry Applications, 2020; 56: 2481-2490, DOI: 10.1109/TIA.2020.2971442
- [6] Jurca, FN, Inte, R, Martis, C, Optimal rotor design of novel outer rotor reluctance synchronous machine. Electrical Engineering, 2020; 102: 107–116, DOI: 10.1007/s00202-019-00786-w
- [7] Chai, W, Zhao, W, Kwon, B-i. Optimal Design of Wound Field Synchronous Reluctance Machines to Improve Torque by Increasing the Saliency Ratio. IEEE Transactions on Magnetics, 2017; 53: 1-4, DOI: 10.1109/TMAG.2017.2707459
- [8] Hrabovcová, V, Makyš, V, Rafajdus, P, Šebest, M. Improved barriers rotor of the reluctance synchronous motor. Electrical Engineering 2017; 99: 1325–1335, DOI: 10.1007/s00202-017-0620-5
- [9] Umesh, BS, Sivakumar, K. Pole-Phase Modulated Multiphase Induction Motor Drive with Reduced Torque Ripple and Improved DC Link Utilization. IEEE Transactions on Power Electronics, 2017; 32: 7862-7869, DOI: 10.1109/TPEL.2016.2634092
- [10] Parsa, L, Toliyat, HA. Five-phase interior permanent magnet motor with low torque pulsation. IEEE Transactions on Industry Applications, 2007; 43: 40-46, doi: 10.1109/TIA.2006.887235.
- [11] Schreier, J. Bendl, J, Chomat, M. Analysis of influence of third spatial harmonic on currents and torque of multi-phase synchronous machine with permanent magnets, Electrical Engineering, 2018; 100: 2095–2102. DOI: 10.1007/s00202-018-0686-8
- [12] Umoh, GD, Obe, CT, Ogbuka, CU, Ekpo, G, Obe, ES, Direct-Phase Variable Modelling and Analysis of Five-Phase Synchronous Reluctance Motor for Direct-on-Line Starting. Przeglad Elektrotechniczny 2021; 97: 24-29, DOI: 10.15199/48.2020.01.21
- [13] Umoh, GD, Ogbuka, CU, Obe, ES. Modelling and Analysis of Five-Phase Permanent Magnet Synchronous Motor in Machine Variables. Przegląd Elektrotechniczny, 2020; 96: 87-92, DOI: 10.15199/48.2021.01.05
- [14] Özüpak, Y. Design and Analysis of a Synchronous Generator Using Finite Element Method Based ANSYS-Maxwell. International Journal of Engineering and Applied Sciences, 2022; 14: 66-76, https://doi.org/10.24107/ijeas.1163134
- [15] Torkaman, H, Afjei, E, Gorgani, A, Faraji, N, Karim, H, Arbab, N. External rotor SRM with high torque per volume: design, analysis, and experiments. Electrical Engineering, 2013; 95: 393–401, DOI: 10.1007/s00202-012-0265-3
- [16] Duan, Y, Ionel, DM. A Review of Recent Developments in Electrical Machine Design Optimization Methods with a Permanent-Magnet Synchronous Motor Benchmark Study. IEEE Transactions on Industry Applications, 2013; 49: 1268-1275, DOI: 10.1109/TIA.2013.2252597
- [17] Epemu, A, Onyishi, D, Obe, S. Performance Analysis of Line-Start Concentrated Dual-winding Synchronous Reluctance Machine with Capacitive Assistance. Gazi University Journal of Science, 2022; 35: 917-934, DOI: 10.35378/gujs.887673
- [18] Krüttgen, C, Steentjes, S, Glehn, G, Hameyer, K. Parametric Homogenized Model for Inclusion of Eddy Currents and Hysteresis in 2-D Finite-Element Simulation of Electrical Machines. IEEE Transactions on Magnetics, 2017; 53, 1-4, DOI: 10.1109/TMAG.2017.2660460
- [19] Zhao, W, Xing, F, Wang, T, Lipo, TA, Kwon, B. Design and Analysis of a Novel PM-Assisted Synchronous Reluctance Machine with Axially Integrated Magnets by the Finite-Element Method. IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017, Art no. 8104104, DOI: 10.1109/TMAG.2017.2662717
- [20] Tiegna, H, Bellara, A, Amara, Y, Barakat, G. Analytical Modelling of the Open-Circuit Magnetic Field in Axial Flux Permanent-Magnet Machines with Semi-Closed Slots. IEEE Transactions on Magnetics, 2012; 48: 1212-1226, DOI: 10.1109/TMAG.2011.2171979.
- [21] Azizi, H, Vahedi, A. Sensitivity Analysis and Optimum Design for the Stator of synchronous reluctance machine using the coupled finite and Taguchi method. Turkish Journal of Electrical and Computer Sciences, 2015; 23: 38-51, DOI: 10.3906/elk-1111-40.
- [22] Nekoubin A, Soltani J, Dowlatshahi, M. Comparative analysis of three-phase and five-phase permanent-magnet motor based on finite element method. Journal of Electrical Engineering & Technology, 2020; 15: 1705–1712, DOI: 10.1007/s42835-020-00444-3.
- [23] Pereira, LA, Scharlau, CC, Pereira, LFA, Haffner, S. Influence of Saturation on the Airgap Induction Waveform of Five-Phase Induction Machines. IEEE Transactions on Energy Conversion, 2012; 27: 29-41, DOI: 10.1109/TEC.2011.2169674.
- [24] Bomela, XB, Kamper, MJ. Effect of stator chording and rotor skewing on performance of reluctance synchronous machine. IEEE Transactions on Industry Applications, 2002; 38: 91-100, DOI: 10.1109/28.980362.
- [25] Barcaro, M, Bianchi, N, Magnussen, F. Six-Phase Supply Feasibility Using a PM Fractional-Slot Dual Winding Machine. IEEE Transactions on Industry Applications, 2011; 47: 2042-2050, DOI: 10.1109/TIA.2011.2161859.
- [26] Raziee, SM, Misir, O, Ponick, B. Winding Function Approach for Winding Analysis. IEEE Transactions on Magnetics, 2017; 53: 1-9, DOI: 10.1109/TMAG.2017.2712570.
- [27] Munoz, AR, Lipo, TA. Complex Vector Model of the Squirrel-cage Induction Machine Including Instantaneous Rotor Bar Currents, IEEE Transactions on Industry Applications, 1999; 35: 1332-1340, DOI: 10.1109/28.806047.
Year 2024,
Volume: 8 Issue: 1, 11 - 26, 31.03.2024
Gideon Umoh
,
Desmond Obinna Obe
,
Benjamin Mama
,
Pauline Obe
,
Chikaodili Helen Ugwuıshıwu
Hyacinth Agozie Eneh
Emeka Simon Obe
References
- [1] Liu, HC, Lee, J. Optimum Design of an IE4 Line-Start Synchronous Reluctance Motor Considering Manufacturing Process Loss Effect. IEEE Transactions on Industrial Electronics, 2017; 65: 3104-3114. DOI: 10.1109/TIE.2017.2758738
- [2] Kersten, A, Liu, Y, Pehrman, D, Thiringer, T. Rotor Design of Line-Start Synchronous Reluctance Machine with Round Bars. IEEE Transactions on Industry Applications, 2019; 55: 3685-3696, DOI: 10.1109/TIA.2019.2914010
- [3] Ogbuka, CU, Nwosu, CM, Umoh, GD. A new cross-saturated torque model of highly utilized synchronous reluctance machine, Archives of Electrical Engineering. 2018; 67: 109–121, DOI: 10.24425/118995
- [4] Obe, ES, Binder, A. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics. Energy Conversion and Management, 2011; 52: 284-291. DOI: 10.1016/j.enconman.2010.06.069
- [5] S. Stipetic, S, Zarko, D, Cavar, N. Adjustment of Rated Current and Power Factor in a Synchronous Reluctance Motor Optimally Designed for Maximum Saliency Ratio. IEEE Transactions on Industry Applications, 2020; 56: 2481-2490, DOI: 10.1109/TIA.2020.2971442
- [6] Jurca, FN, Inte, R, Martis, C, Optimal rotor design of novel outer rotor reluctance synchronous machine. Electrical Engineering, 2020; 102: 107–116, DOI: 10.1007/s00202-019-00786-w
- [7] Chai, W, Zhao, W, Kwon, B-i. Optimal Design of Wound Field Synchronous Reluctance Machines to Improve Torque by Increasing the Saliency Ratio. IEEE Transactions on Magnetics, 2017; 53: 1-4, DOI: 10.1109/TMAG.2017.2707459
- [8] Hrabovcová, V, Makyš, V, Rafajdus, P, Šebest, M. Improved barriers rotor of the reluctance synchronous motor. Electrical Engineering 2017; 99: 1325–1335, DOI: 10.1007/s00202-017-0620-5
- [9] Umesh, BS, Sivakumar, K. Pole-Phase Modulated Multiphase Induction Motor Drive with Reduced Torque Ripple and Improved DC Link Utilization. IEEE Transactions on Power Electronics, 2017; 32: 7862-7869, DOI: 10.1109/TPEL.2016.2634092
- [10] Parsa, L, Toliyat, HA. Five-phase interior permanent magnet motor with low torque pulsation. IEEE Transactions on Industry Applications, 2007; 43: 40-46, doi: 10.1109/TIA.2006.887235.
- [11] Schreier, J. Bendl, J, Chomat, M. Analysis of influence of third spatial harmonic on currents and torque of multi-phase synchronous machine with permanent magnets, Electrical Engineering, 2018; 100: 2095–2102. DOI: 10.1007/s00202-018-0686-8
- [12] Umoh, GD, Obe, CT, Ogbuka, CU, Ekpo, G, Obe, ES, Direct-Phase Variable Modelling and Analysis of Five-Phase Synchronous Reluctance Motor for Direct-on-Line Starting. Przeglad Elektrotechniczny 2021; 97: 24-29, DOI: 10.15199/48.2020.01.21
- [13] Umoh, GD, Ogbuka, CU, Obe, ES. Modelling and Analysis of Five-Phase Permanent Magnet Synchronous Motor in Machine Variables. Przegląd Elektrotechniczny, 2020; 96: 87-92, DOI: 10.15199/48.2021.01.05
- [14] Özüpak, Y. Design and Analysis of a Synchronous Generator Using Finite Element Method Based ANSYS-Maxwell. International Journal of Engineering and Applied Sciences, 2022; 14: 66-76, https://doi.org/10.24107/ijeas.1163134
- [15] Torkaman, H, Afjei, E, Gorgani, A, Faraji, N, Karim, H, Arbab, N. External rotor SRM with high torque per volume: design, analysis, and experiments. Electrical Engineering, 2013; 95: 393–401, DOI: 10.1007/s00202-012-0265-3
- [16] Duan, Y, Ionel, DM. A Review of Recent Developments in Electrical Machine Design Optimization Methods with a Permanent-Magnet Synchronous Motor Benchmark Study. IEEE Transactions on Industry Applications, 2013; 49: 1268-1275, DOI: 10.1109/TIA.2013.2252597
- [17] Epemu, A, Onyishi, D, Obe, S. Performance Analysis of Line-Start Concentrated Dual-winding Synchronous Reluctance Machine with Capacitive Assistance. Gazi University Journal of Science, 2022; 35: 917-934, DOI: 10.35378/gujs.887673
- [18] Krüttgen, C, Steentjes, S, Glehn, G, Hameyer, K. Parametric Homogenized Model for Inclusion of Eddy Currents and Hysteresis in 2-D Finite-Element Simulation of Electrical Machines. IEEE Transactions on Magnetics, 2017; 53, 1-4, DOI: 10.1109/TMAG.2017.2660460
- [19] Zhao, W, Xing, F, Wang, T, Lipo, TA, Kwon, B. Design and Analysis of a Novel PM-Assisted Synchronous Reluctance Machine with Axially Integrated Magnets by the Finite-Element Method. IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017, Art no. 8104104, DOI: 10.1109/TMAG.2017.2662717
- [20] Tiegna, H, Bellara, A, Amara, Y, Barakat, G. Analytical Modelling of the Open-Circuit Magnetic Field in Axial Flux Permanent-Magnet Machines with Semi-Closed Slots. IEEE Transactions on Magnetics, 2012; 48: 1212-1226, DOI: 10.1109/TMAG.2011.2171979.
- [21] Azizi, H, Vahedi, A. Sensitivity Analysis and Optimum Design for the Stator of synchronous reluctance machine using the coupled finite and Taguchi method. Turkish Journal of Electrical and Computer Sciences, 2015; 23: 38-51, DOI: 10.3906/elk-1111-40.
- [22] Nekoubin A, Soltani J, Dowlatshahi, M. Comparative analysis of three-phase and five-phase permanent-magnet motor based on finite element method. Journal of Electrical Engineering & Technology, 2020; 15: 1705–1712, DOI: 10.1007/s42835-020-00444-3.
- [23] Pereira, LA, Scharlau, CC, Pereira, LFA, Haffner, S. Influence of Saturation on the Airgap Induction Waveform of Five-Phase Induction Machines. IEEE Transactions on Energy Conversion, 2012; 27: 29-41, DOI: 10.1109/TEC.2011.2169674.
- [24] Bomela, XB, Kamper, MJ. Effect of stator chording and rotor skewing on performance of reluctance synchronous machine. IEEE Transactions on Industry Applications, 2002; 38: 91-100, DOI: 10.1109/28.980362.
- [25] Barcaro, M, Bianchi, N, Magnussen, F. Six-Phase Supply Feasibility Using a PM Fractional-Slot Dual Winding Machine. IEEE Transactions on Industry Applications, 2011; 47: 2042-2050, DOI: 10.1109/TIA.2011.2161859.
- [26] Raziee, SM, Misir, O, Ponick, B. Winding Function Approach for Winding Analysis. IEEE Transactions on Magnetics, 2017; 53: 1-9, DOI: 10.1109/TMAG.2017.2712570.
- [27] Munoz, AR, Lipo, TA. Complex Vector Model of the Squirrel-cage Induction Machine Including Instantaneous Rotor Bar Currents, IEEE Transactions on Industry Applications, 1999; 35: 1332-1340, DOI: 10.1109/28.806047.