Research Article
BibTex RIS Cite

ATIK HDPE KULLANILARAK SÜRDÜRÜLEBİLİR KOMPOZİT YAPI MALZEMESİ TASARIMI VE ÖZELLİKLERİ

Year 2020, Volume: 8 Issue: 3, 777 - 782, 24.09.2020
https://doi.org/10.21923/jesd.741478

Abstract

Bu çalışmanın amacı, ahşap kaplama ve atık plastik kullanarak yeni nesil sürdürülebilir yapı malzemesi üretmektir. Bu araştırmada, kavak (Populus Euphratica) kaplama ve dört farklı yoğunluğa sahip (170 g/m², 200 g/m², 240 g/m² ve 280 g/m²) yüksek yoğunluklu polietilen (HDPE) kullanılarak kontrplak üretilmiştir. Üretilen kompozit malzemelerin hava kurusu yoğunluk (TS EN 323), eğilme direnci (TS EN 310), eğilmede elastikiyet modülü (TS EN 310) ve şok direnci (TS 2477) gibi teknolojik özellikleri araştırılmıştır. Elde edilen test sonuçlarına göre, kontrplak üretiminde kullanılan yüksek yoğunluklu polietilenin (HDPE) kompozit malzeme içerisindeki yoğunluğunun artmasına paralel bir şekilde teknolojik özelliklerde de artış kaydedildiği tespit edilmiştir.

References

  • Bal, B.C., Özyurt, H., 2015. Some technological properties of laminated veneer lumber reinforced with woven glass fiber, Kahramanmaraş Sütçü Imam University Journal of Engineering Sciences, 18(1), 2015, 9-16.
  • Basterra, L.A., Acuna, L., Casado, M., Lopez, G., Bueno, A., 2012. Strength testing of poplar duo beams, Populus x euramericana (Done) Guinier cv. I-214, with fibre reinforcement, Constr Build Mater, 36 (2012): 90-96.
  • Biblis, E.J., 1965. Analysis of Wood-Fiberglass Composite Beams Within and Beyond the Elastic Region. Forest Prod J, 15(2):81–89.
  • Fiorelli, J., Dias, A., 2006. Fiberglass-reinforced glulam beams: mechanical properties and theoretical model, Materials Research. 9(3): 263-269.
  • Hallstrom, S., Grenestedt, J.L., 1997. Failure analysis of laminated timber beams reinforced with glass fiber composites, Wood Science and Technology. 31: 17-34.
  • Luggin, W., Beıgmeister, K., 1998. Carbon Fiber Reinforced and Prestressed Timber Beams. 2nd Int. PHD. Symposium in Civil Engineering. Budapest, Hungary.
  • Özyurt, H., Ayrılmış, N., 2018. Investigation of some mechanical properties of laminated veneer lumber applied to reinforcement design, 3rd International Mediterranean Science and Engineering Congress (IMSEC 2018), Pages: 1064-1066, Paper ID:383.
  • Pidaparti, R.M.V., Johnson, K., 1996. Composite lamination to wood, Polymers & Polymer Composites. 4 (2): 125-128.
  • Rowlands, R.E., Deweghe, R.P.V., Laufenberg, T.L., Krueger, G.P., 1986. Fiber-reinforced wood composites, Wood Fiber Sci. 18 (1) (1986) 39–57.
  • Subaşı, S., Güler, C., 2012. Carbon and glass fiber reinforced laminated scots pine (Pinus sylvestris L.), Kahramanmaraş Sütçü Imam University Journal of Engineering Sciences, Special Issue, 2012, 78-82.
  • Taheri, F., Nagaraj, M., Khosravi, P., 2009. Buckling response of glue-laminated columns reinforced with fiber-reinforced plastic sheets, Composite Structures, 88 (2009): 481-490.
  • TS 2477., 1976. Wood determination of impact bending strength, Turkish Standard Institute (TSE), Ankara, Turkey.
  • TS EN 310., 1999. Wood based panels determination of modulus of elasticity in bending and of bending strength, Turkish Standard Institute (TSE), Ankara, Turkey.
  • TS EN 323., 1999. Wood based panels-Determination of density, Turkish Standard Institute (TSE), Ankara, Turkey.
  • Wangaard, F.F., 1964. Elastic Deflection of Wood–Fiberglass Composite Beams. Forest Prod J, 13(6):256–260.

DESIGN AND PROPERTIES OF COMPOSITE SUSTAINABLE BUILDING MATERIAL BY USING WASTE HDPE

Year 2020, Volume: 8 Issue: 3, 777 - 782, 24.09.2020
https://doi.org/10.21923/jesd.741478

Abstract

The aim of this study is to produce next generation of sustainable building materials by using wood veneers and waste plastics. In this study, plywood was produced using poplar (Populus Euphratica) veneer and waste high-density polyethylene (HDPE). Four different high-density polyethylene amounts were used (170 g/m², 200 g/m², 240 g/m² and 280 g/m²). Some technological properties such as density, modulus of elasticity (MOE), modulus of rupture (MOR), and impact bending (IB) were investigated according to Turkish standards TS EN 323, TS EN 310, TS EN 310 and TS 2477, respectively. According to obtained data, the density, MOR, MOE and IB values are increased by increasing the usage rate of HDPE in composite production.

References

  • Bal, B.C., Özyurt, H., 2015. Some technological properties of laminated veneer lumber reinforced with woven glass fiber, Kahramanmaraş Sütçü Imam University Journal of Engineering Sciences, 18(1), 2015, 9-16.
  • Basterra, L.A., Acuna, L., Casado, M., Lopez, G., Bueno, A., 2012. Strength testing of poplar duo beams, Populus x euramericana (Done) Guinier cv. I-214, with fibre reinforcement, Constr Build Mater, 36 (2012): 90-96.
  • Biblis, E.J., 1965. Analysis of Wood-Fiberglass Composite Beams Within and Beyond the Elastic Region. Forest Prod J, 15(2):81–89.
  • Fiorelli, J., Dias, A., 2006. Fiberglass-reinforced glulam beams: mechanical properties and theoretical model, Materials Research. 9(3): 263-269.
  • Hallstrom, S., Grenestedt, J.L., 1997. Failure analysis of laminated timber beams reinforced with glass fiber composites, Wood Science and Technology. 31: 17-34.
  • Luggin, W., Beıgmeister, K., 1998. Carbon Fiber Reinforced and Prestressed Timber Beams. 2nd Int. PHD. Symposium in Civil Engineering. Budapest, Hungary.
  • Özyurt, H., Ayrılmış, N., 2018. Investigation of some mechanical properties of laminated veneer lumber applied to reinforcement design, 3rd International Mediterranean Science and Engineering Congress (IMSEC 2018), Pages: 1064-1066, Paper ID:383.
  • Pidaparti, R.M.V., Johnson, K., 1996. Composite lamination to wood, Polymers & Polymer Composites. 4 (2): 125-128.
  • Rowlands, R.E., Deweghe, R.P.V., Laufenberg, T.L., Krueger, G.P., 1986. Fiber-reinforced wood composites, Wood Fiber Sci. 18 (1) (1986) 39–57.
  • Subaşı, S., Güler, C., 2012. Carbon and glass fiber reinforced laminated scots pine (Pinus sylvestris L.), Kahramanmaraş Sütçü Imam University Journal of Engineering Sciences, Special Issue, 2012, 78-82.
  • Taheri, F., Nagaraj, M., Khosravi, P., 2009. Buckling response of glue-laminated columns reinforced with fiber-reinforced plastic sheets, Composite Structures, 88 (2009): 481-490.
  • TS 2477., 1976. Wood determination of impact bending strength, Turkish Standard Institute (TSE), Ankara, Turkey.
  • TS EN 310., 1999. Wood based panels determination of modulus of elasticity in bending and of bending strength, Turkish Standard Institute (TSE), Ankara, Turkey.
  • TS EN 323., 1999. Wood based panels-Determination of density, Turkish Standard Institute (TSE), Ankara, Turkey.
  • Wangaard, F.F., 1964. Elastic Deflection of Wood–Fiberglass Composite Beams. Forest Prod J, 13(6):256–260.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Hamit Özyurt 0000-0003-4060-1583

Publication Date September 24, 2020
Submission Date May 22, 2020
Acceptance Date September 4, 2020
Published in Issue Year 2020 Volume: 8 Issue: 3

Cite

APA Özyurt, H. (2020). DESIGN AND PROPERTIES OF COMPOSITE SUSTAINABLE BUILDING MATERIAL BY USING WASTE HDPE. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 777-782. https://doi.org/10.21923/jesd.741478