Research Article
BibTex RIS Cite

IDENTIFYING THE IMPROVEMENT POSSIBILITIES OF A FLUIDIZED BED BOILER WITH EXERGY ANALYSIS

Year 2021, Volume: 9 Issue: 3, 911 - 922, 21.09.2021
https://doi.org/10.21923/jesd.897196

Abstract

In this study, a circulation-type fluidized bed boiler's exergy performance in a power generation plant was investigated. The boiler was examined not as a whole but by dividing it into its sub-systems. In the analysis, the sub-systems' exergy performance was evaluated in terms of criteria such as exergy efficiency, exergy destruction, fuel depletion ratio, relative exergy destruction ratio, exergetic improvement potential, and productivity lack ratio. In addition, the effect of different dead state temperatures on these exergy performance criteria is compared and discussed. As a result of the analysis, the highest exergy efficiency was achieved in the furnace with 80.2% at 6℃, while the highest exergy destruction occurred in the furnace as 18,118.9 kW at 27℃. The highest exergetic improvement potential was realized in Economizer-II with 11,593.82 kW at 6℃, and the lowest in Economizer-I at 27℃ with 631,9 kW. The effect of the increase in the dead state temperature on the exergy performance criteria applied to boiler sub-systems was variable. It showed its effect as an increase in some sub-systems and a decrease in others.

References

  • Akkurt, F., Kahraman, A., 2017. An Exergy Analysis of Solar-Assisted Ejector Cooling System for Different Area Raatios at Their Maximum COP Values. Thermal Sciences, 23, 179-190.
  • Aljundi, I.H., 2009. Energy and Exergy Analysis of A Steam Power Plant in Jordan. Applied Thermal Engineering, 29, 324-328.
  • Balli, O., Aras, H., Aras, N., Hepbasli, A., 2008. Exergetic and Exergoeconomic Analysis of An Aircraft Jet Engine. International Journal of Exergy, 5, 567-581.
  • Behbahaninia, A., Ramezani, S., Hejrandoost, M.L., 2017. A Loss Method for Exergy Auditing of Steam Boilers. Energy, 140,253-260.
  • Callak, M., Balkan, F., Hepbasli, A., 2015. Avoidable and Unavoidable Exergy Destructions of A Fluidized Bed Coal Combustor and A Heat Recovery Steam Generator. Energy Conversion and Management, 98, 54-58.
  • Çengel, Y.A., Boles, M.A., 2008. Thermodynamics on Engineering Approach (6th Edition) page 445 ISBN 978-0-07-125771-8.
  • Dincer, I., Rosen, M.A., 2007. Exergy, Energy, Environment and Sustainable Development. Elsevier
  • Elhelw, M., Dahma, K.S., Attia, A., 2019. Utilizing Exergy Analysis in Studying the Performance of Steam Power Plant at Two Different Operation Mode. Applied Thermal Engineering, 150, 285-293.
  • Erdem, H.H., Akkaya, A.V., Cetin, B., Dagdas, A., Sevilgen, S.H., Sahin, B., Teke, I., Gungor, C., Atas, S., 2009. Comparative Energetic and Exergetic Performance Analyses for Coal Fired Thermal Power Plants in Turkey. International Journal of Thermal Sciences, 48,2179-2186.
  • Eskin, N., Kilic, A., 1996. Estimation of Cooling Tube Location in Fluidized Bed Coal Combustors Through Exergy Analysis. Energy Conversion and Management, 37 (9), 1453-1461.
  • Eskin, N., Gungor, A., Özdemir, K., 2009. Thermodynamic Analysis of A FBC Steam Power Plant. Energy Conversion and Management, 50, 2428-2438.
  • Ganapathy, T., Alahumurthi, N., Gakkhar, R.P., Murugesan, K., 2009. Exergy Analysis of Operating Lignite Fired Thermal Power Plant. Journal of Engineering Science and Technology Review, 2 (1), 123-130.
  • Gürtürk, M., Oztop, H.F., 2016. Exergy Analysis of A Circulating Fluidized Bed Boiler Cogeneration Power Plant. Energy Conversion and Management, 120, 346-357.
  • Hepbasli, A., 2009. Exergetic Modeling of Oil Shale-Fired Circulating Fluidized Bed Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31:4, 325-337.
  • İpek, O., Kılıç, B., Gürel, B., 2017. Experimental Investigation of Exergy Loss Analysis in Newly Designed Compact Heat Exchangers. Energy, 124, 330-335.
  • Kolip, A., Savas, A.F., 2010. Energy and Exergy Analyses of A Parallel Flow, Four-Stage Cyclone Precalciner Type Cement Plant. International Journal of The Physical Sciences, 5 (7),1147-1163.
  • Kopac, M., Hilalci, A., 2007. Effect of Ambient Temperature on The Efficiency of The Regenerative and Reheat Çatalağzı Power Plant in Turkey. Applied Thermal Engineering, 27, 1377-1385.
  • Li, Y., Liu, L., 2012. Exergy Analysis of 300 MW Coal Fired Power Plant. Energy Procedia, 17, 936-932.
  • Ozdil, N.F.T., Tantekin, A., Erbay, Z., 2016. Energy and Exergy Analyses of A Fluidized Bed Coal Combustor Steam Plant in Textile Industry. Fuel, 183, 441-448.
  • Pattanayak, L., Sahu, J.N., 2015. Steady State Modeling on Energy and Exergy Analysis of A Pulverized Coal Fired Thermal Power Plant. Asia-Pacific Journal of Chemical Engineering, 10, 876-884.
  • Regulagadda, P., Dincer, I., Naterer, G.F., 2010. Exergy Analysis of Thermal Power Plant with Measured Boiler and Turbine Losses. Applied Thermal Engineering, 30, 970-976.
  • Sengupta, S., Datta, A., Duttagupta, S., 2007. Exergy Analysis of Coal Based 210 MW Thermal Power Plant. International Journal of Energy Research, 31, 14-28.
  • Sharma, M., Singh, O., 2016. Exergy Analysis of Dual Pressure HRSG for Different Dead States and Varying Steam Generation States in Gas/Steam Combined Cycle Power Plant. Applied Thermal Engineering, 93, 614-622.
  • Si, N., Zhao, Z., Su, S., Han, P., Sun, Z., Xu, J., Cui, X., Hu, S., Wang, Y., Jiang, L., Zhou, Y., Chen, G., Xiang, J., 2017. Exergy Analysis of A 1000 MW Double Reheat Ultra-Supercritical Power Plant. Energy Conversion and Management, 147, 155-165.
  • Suresh, M.V.J.J., Reddy, K.S., Kolar, A.K., 2011. Thermodynamic Analysis of A Coal Fired Power Plant Repowered with Pressurized Pulverized Coal Combustion. Proc. IMecE. Vol. 226 Part A: J. Power and Energy, 1-12.
  • Szargut, J., Morris, D.R., Steward, F.R., 1988. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. New York: Hemisphere.
  • Szargut, J., 2005. Exergy Method: Technical and Ecological Applications. Southampton (UK): WIT Press
  • Şöhret, Y., Açıkkalp, E., Hepbasli, A., Karakoc, T.H., 2015. Advanced Exergy Analysis of An Aircraft Gas Turbine Engine: Splitting Exergy Destructions into Parts. Energy, 90, 1219-1228.
  • Topal, H., Taner, T., Naqvi, S.A.H., Altınsoy, Y., Amirabedin, E., Ozkaymak, M., 2017. Exergy Analysis of A Circulating Fluidized Bed Power Plant Co-Firing With Olive Pits: A Case Study of Power Plant in Turkey. Energy, 140, 40-46.
  • Van Gool, W., 1992. Exergy Analysis of Industrial Processes. Energy, 17,791-803.
  • Wang, N., Wu, D., Yang, Y., Yang, Z., Fu, P., 2014. Exergy Evaluation of A 600 MWe Supercritical Coal-Fired Power Plant Considering Pollution Emissions. Energy Procedia, 61, 1860-1863.
  • Wu, L., Wang, L., Wang, Y., Hu, X., Dong, C., Yang, Z., Yang, Y., 2014. Component and Process Based Exergy Evaluation of A 600 MW Coal-Fired Power Plant. Energy Procedia, 61, 2097-2100
  • Xiang, J.Y., Cali, M., Santaralli, M., 2004. Calculation for Physical and Chemical Exergy of Flows in Systems Elaborating Mixed-Phase Flows and A Case Study in An IRSOFC Plant. International Journal of Energy Research, 28, 101-115.
  • Xiong, J., Zhao, H., Zheng, C., 2011. Exergy Analysis of A 600 MWe Oxy-Combustion Pulverized-Coal-Fired Power Plant. Energy and Fuels, 25, 3854-3864.
  • Yazıcı, M., Köse, R., 2019. Çevre Sıcaklığının Dolaşımlı Akışkan Yataklı Kazanın Ekserji Performansı Üzerindeki Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6 (2), 477-490.
  • Zhang, Q., Yi, H., Yu, Z., Gao, J., Wang, X., Lin, H., Shen, B., 2018. Energy-Exergy Analysis and Energy Efficiency Improvement of Coal-Fired Industrial Boilers Based on Thermal Test Data. Applied Thermal Engineering, 144, 614-627.
  • Zhou, J., Ling, P., Su, S., Xu, J., Xu, K., Wang, Y., Hu, S., Zhu, M., Xiang, J., 2019. Exergy Analysis of A 1000 MW Single Reheat Advanced Supercritical Carbon Dioxide Coal-Fired Partial Flow Power Plant. Fuel, 255, 115777.

EKSERJİ ANALİZİ İLE BİR AKIŞKAN YATAKLI KAZANIN İYİLEŞTİRME OLANAKLARININ TESPİT EDİLMESİ

Year 2021, Volume: 9 Issue: 3, 911 - 922, 21.09.2021
https://doi.org/10.21923/jesd.897196

Abstract

Bu çalışmada, bir güç üretim tesisinde kullanılan dolaşım tipli akışkan yataklı kazanın ekserji performansı araştırılmıştır. Kazan bir bütün olarak değil, alt sistemlerine ayrılarak incelemeye tabi tutulmuştur. Analizde alt sistemlerin ekserji performansı, ekserji verimliliği, ekserji yıkımı, nispi ekserji yıkımı oranı, yakıt tüketme oranı, ekserjetik gelişim potansiyeli ve üretkenlik eksikliği oranı gibi kriterler bakımından değerlendirilmiştir. Ayrıca, farklı ölü hal sıcaklıklarının bu ekserji performans kriterleri üzerindeki etkisi kıyaslanmış ve tartışılmıştır. Yapılan analizler sonucunda en yüksek ekserji verimi %80,2 ile 6℃’de yanma odasında, en yüksek ekserji yıkımı ise yine yanma odasında 27℃’de 18.118,9 kW olarak gerçekleşmiştir. En yüksek ekserjetik gelişim potansiyeli 11.593,82 kW ile 6℃’de eko-II’de, en düşük ise 631,9 kW ile 27℃’de eko-I’de gerçekleşmiştir. Ölü hal sıcaklığındaki artışın kazan alt sistemlerine uygulanan ekserji performans kriterleri üzerindeki etkisi değişken olmuştur. Kimi alt sistemde artış kimi alt sistemde ise düşüş olarak etkisini göstermiştir.

References

  • Akkurt, F., Kahraman, A., 2017. An Exergy Analysis of Solar-Assisted Ejector Cooling System for Different Area Raatios at Their Maximum COP Values. Thermal Sciences, 23, 179-190.
  • Aljundi, I.H., 2009. Energy and Exergy Analysis of A Steam Power Plant in Jordan. Applied Thermal Engineering, 29, 324-328.
  • Balli, O., Aras, H., Aras, N., Hepbasli, A., 2008. Exergetic and Exergoeconomic Analysis of An Aircraft Jet Engine. International Journal of Exergy, 5, 567-581.
  • Behbahaninia, A., Ramezani, S., Hejrandoost, M.L., 2017. A Loss Method for Exergy Auditing of Steam Boilers. Energy, 140,253-260.
  • Callak, M., Balkan, F., Hepbasli, A., 2015. Avoidable and Unavoidable Exergy Destructions of A Fluidized Bed Coal Combustor and A Heat Recovery Steam Generator. Energy Conversion and Management, 98, 54-58.
  • Çengel, Y.A., Boles, M.A., 2008. Thermodynamics on Engineering Approach (6th Edition) page 445 ISBN 978-0-07-125771-8.
  • Dincer, I., Rosen, M.A., 2007. Exergy, Energy, Environment and Sustainable Development. Elsevier
  • Elhelw, M., Dahma, K.S., Attia, A., 2019. Utilizing Exergy Analysis in Studying the Performance of Steam Power Plant at Two Different Operation Mode. Applied Thermal Engineering, 150, 285-293.
  • Erdem, H.H., Akkaya, A.V., Cetin, B., Dagdas, A., Sevilgen, S.H., Sahin, B., Teke, I., Gungor, C., Atas, S., 2009. Comparative Energetic and Exergetic Performance Analyses for Coal Fired Thermal Power Plants in Turkey. International Journal of Thermal Sciences, 48,2179-2186.
  • Eskin, N., Kilic, A., 1996. Estimation of Cooling Tube Location in Fluidized Bed Coal Combustors Through Exergy Analysis. Energy Conversion and Management, 37 (9), 1453-1461.
  • Eskin, N., Gungor, A., Özdemir, K., 2009. Thermodynamic Analysis of A FBC Steam Power Plant. Energy Conversion and Management, 50, 2428-2438.
  • Ganapathy, T., Alahumurthi, N., Gakkhar, R.P., Murugesan, K., 2009. Exergy Analysis of Operating Lignite Fired Thermal Power Plant. Journal of Engineering Science and Technology Review, 2 (1), 123-130.
  • Gürtürk, M., Oztop, H.F., 2016. Exergy Analysis of A Circulating Fluidized Bed Boiler Cogeneration Power Plant. Energy Conversion and Management, 120, 346-357.
  • Hepbasli, A., 2009. Exergetic Modeling of Oil Shale-Fired Circulating Fluidized Bed Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31:4, 325-337.
  • İpek, O., Kılıç, B., Gürel, B., 2017. Experimental Investigation of Exergy Loss Analysis in Newly Designed Compact Heat Exchangers. Energy, 124, 330-335.
  • Kolip, A., Savas, A.F., 2010. Energy and Exergy Analyses of A Parallel Flow, Four-Stage Cyclone Precalciner Type Cement Plant. International Journal of The Physical Sciences, 5 (7),1147-1163.
  • Kopac, M., Hilalci, A., 2007. Effect of Ambient Temperature on The Efficiency of The Regenerative and Reheat Çatalağzı Power Plant in Turkey. Applied Thermal Engineering, 27, 1377-1385.
  • Li, Y., Liu, L., 2012. Exergy Analysis of 300 MW Coal Fired Power Plant. Energy Procedia, 17, 936-932.
  • Ozdil, N.F.T., Tantekin, A., Erbay, Z., 2016. Energy and Exergy Analyses of A Fluidized Bed Coal Combustor Steam Plant in Textile Industry. Fuel, 183, 441-448.
  • Pattanayak, L., Sahu, J.N., 2015. Steady State Modeling on Energy and Exergy Analysis of A Pulverized Coal Fired Thermal Power Plant. Asia-Pacific Journal of Chemical Engineering, 10, 876-884.
  • Regulagadda, P., Dincer, I., Naterer, G.F., 2010. Exergy Analysis of Thermal Power Plant with Measured Boiler and Turbine Losses. Applied Thermal Engineering, 30, 970-976.
  • Sengupta, S., Datta, A., Duttagupta, S., 2007. Exergy Analysis of Coal Based 210 MW Thermal Power Plant. International Journal of Energy Research, 31, 14-28.
  • Sharma, M., Singh, O., 2016. Exergy Analysis of Dual Pressure HRSG for Different Dead States and Varying Steam Generation States in Gas/Steam Combined Cycle Power Plant. Applied Thermal Engineering, 93, 614-622.
  • Si, N., Zhao, Z., Su, S., Han, P., Sun, Z., Xu, J., Cui, X., Hu, S., Wang, Y., Jiang, L., Zhou, Y., Chen, G., Xiang, J., 2017. Exergy Analysis of A 1000 MW Double Reheat Ultra-Supercritical Power Plant. Energy Conversion and Management, 147, 155-165.
  • Suresh, M.V.J.J., Reddy, K.S., Kolar, A.K., 2011. Thermodynamic Analysis of A Coal Fired Power Plant Repowered with Pressurized Pulverized Coal Combustion. Proc. IMecE. Vol. 226 Part A: J. Power and Energy, 1-12.
  • Szargut, J., Morris, D.R., Steward, F.R., 1988. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes. New York: Hemisphere.
  • Szargut, J., 2005. Exergy Method: Technical and Ecological Applications. Southampton (UK): WIT Press
  • Şöhret, Y., Açıkkalp, E., Hepbasli, A., Karakoc, T.H., 2015. Advanced Exergy Analysis of An Aircraft Gas Turbine Engine: Splitting Exergy Destructions into Parts. Energy, 90, 1219-1228.
  • Topal, H., Taner, T., Naqvi, S.A.H., Altınsoy, Y., Amirabedin, E., Ozkaymak, M., 2017. Exergy Analysis of A Circulating Fluidized Bed Power Plant Co-Firing With Olive Pits: A Case Study of Power Plant in Turkey. Energy, 140, 40-46.
  • Van Gool, W., 1992. Exergy Analysis of Industrial Processes. Energy, 17,791-803.
  • Wang, N., Wu, D., Yang, Y., Yang, Z., Fu, P., 2014. Exergy Evaluation of A 600 MWe Supercritical Coal-Fired Power Plant Considering Pollution Emissions. Energy Procedia, 61, 1860-1863.
  • Wu, L., Wang, L., Wang, Y., Hu, X., Dong, C., Yang, Z., Yang, Y., 2014. Component and Process Based Exergy Evaluation of A 600 MW Coal-Fired Power Plant. Energy Procedia, 61, 2097-2100
  • Xiang, J.Y., Cali, M., Santaralli, M., 2004. Calculation for Physical and Chemical Exergy of Flows in Systems Elaborating Mixed-Phase Flows and A Case Study in An IRSOFC Plant. International Journal of Energy Research, 28, 101-115.
  • Xiong, J., Zhao, H., Zheng, C., 2011. Exergy Analysis of A 600 MWe Oxy-Combustion Pulverized-Coal-Fired Power Plant. Energy and Fuels, 25, 3854-3864.
  • Yazıcı, M., Köse, R., 2019. Çevre Sıcaklığının Dolaşımlı Akışkan Yataklı Kazanın Ekserji Performansı Üzerindeki Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6 (2), 477-490.
  • Zhang, Q., Yi, H., Yu, Z., Gao, J., Wang, X., Lin, H., Shen, B., 2018. Energy-Exergy Analysis and Energy Efficiency Improvement of Coal-Fired Industrial Boilers Based on Thermal Test Data. Applied Thermal Engineering, 144, 614-627.
  • Zhou, J., Ling, P., Su, S., Xu, J., Xu, K., Wang, Y., Hu, S., Zhu, M., Xiang, J., 2019. Exergy Analysis of A 1000 MW Single Reheat Advanced Supercritical Carbon Dioxide Coal-Fired Partial Flow Power Plant. Fuel, 255, 115777.
There are 37 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mesut Yazıcı 0000-0001-6379-8396

Fatih Selim Bayraktar 0000-0002-8672-3511

Ramazan Köse 0000-0001-6041-6591

Publication Date September 21, 2021
Submission Date March 15, 2021
Acceptance Date June 24, 2021
Published in Issue Year 2021 Volume: 9 Issue: 3

Cite

APA Yazıcı, M., Bayraktar, F. S., & Köse, R. (2021). IDENTIFYING THE IMPROVEMENT POSSIBILITIES OF A FLUIDIZED BED BOILER WITH EXERGY ANALYSIS. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(3), 911-922. https://doi.org/10.21923/jesd.897196