Research Article
BibTex RIS Cite

B4C TAKVİYELİ AA7075 KOMPOZİT METAL KÖPÜK ÜRETİMİ VE KARAKTERİZASYONU

Year 2022, Volume: 10 Issue: 1, 1 - 6, 23.03.2022
https://doi.org/10.21923/jesd.912610

Abstract

Bu çalışmada replika metodu diğer adıyla polimer emdirme metodu ile açık hücreli kompozit metal köpük üretimi ve karakterizasyonu araştırılmıştır. Kompozit tozlar AA7075 alüminyum tozu ve ağırlıkça %10 B4C tozu kullanılarak gezegensel tip bilyeli öğütücüde 1 saat alaşımlanarak hazırlanmıştır. Hazırlanan kompozit tozlar kullanılarak üretilen kompozit metal köpüğün karakterizasyonu ve morfoloji incelemesi XRD ve SEM/EDS analizleri kullanılarak gerçekleştirilmiştir. Analizler sonucunda, kompozit köpük metal yapısında α-Al, B4C, poliüretan süngerin yapıdan tam olarak uzaklaşmaması sonucu C fazı ve sinterleme prosesinden kaynaklanan Al3BC, AlB2, AlB12C2 ve Al3B48C2 gibi ikincil ve üçüncül fazların oluştuğu gözlemlenmiştir.

Supporting Institution

Atatürk Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBA-2020-8469

References

  • Allen, B. C., Mote, M. W., and Sabroff, A. M., 1959. Method of making foamed metal USA. Patent 3087807A.
  • Ashby, M. F., Evans, A. G., Fleck, N. A. , Gibson, L. J. , Hutchinson, J. W. , and Wadley, H. N. G. . 2000. Metal Foams: A Design Guide Butterworth-Heinemann: USA.
  • Banhart, J., and Seeliger, H. W. 2008. Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications, Advanced Engineering Materials, 10, 793-802.
  • Baumeister, J., Banhart, J., and Weber, M. 1997. Aluminium foams for transport industry, Materials & Design, 18, 217-20.
  • Çinici, H., 2004. Toz metalurjisi yöntemi ile alüminyum esaslı metalik köpük üretimi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Dahil, L. 2017. Alüminyum Köpük Malzemenin Dinamik Davranışlarının İncelenmesi Afyon Kocatepe University Journal of Science and Engineering, 17: 352-56.
  • Danacı, E., 2011. Ti-6Al-4v Alaşımı ile Açık Hücreli Köpük Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Duarte, I., and Banhart, J. 2000. A study of aluminium foam formation—kinetics and microstructure, Acta Materialia, 48: 2349-62.
  • Gauthier, Maxime, Lefebvre, Louis-Philippe, Thomas, Yannig, and Bureau, Martin N. 2004. Production of Metallic Foams Having Open Porosity Using a Powder Metallurgy Approach, Materials and Manufacturing Processes, 19, 793-811.
  • Güven, Ş. Y. 2011. Toz Metalurjisi ve Metalik Köpükler, SDU Teknik Bilimler Dergisi, 1: 22-28.
  • Kashef, Sadaf, Lin, Jianguo, Hodgson, Peter D., and Yan, Wenyi. 2009. 'Mechanical Properties of Titanium Foam for Biomedical Applications.' in, Engineering Plasticity and Its Applications From Nanoscale to Macroscale WORLD SCIENTIFIC.
  • Kovtunov, A. I., Khokhlov, Yu Yu, and Myamin, S. V. 2015. Layered Composite Material Formation Technology for the Titanium–Foam Aluminum System, Metallurgist, 59, 339-41.
  • Lee, Min Ha, Kim, Ki Buem, Han, Jun Hee, Eckert, Jürgen, and Sordelet, Daniel J. 2008. High strength porous Ti–6Al–4V foams synthesized by solid state powder processing, Journal of Physics D: Applied Physics, 41, 105404.
  • Tan, P. J., Reid, S. R., Harrigan, J. J., Zou, Z., and Li, S. 2005. Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations, Journal of the Mechanics and Physics of Solids, 53, 2174-205.
  • Zaman, E., 2011. Açık Hücreli Al Köpük Üretimi Ve Karakterizasyonu, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Zardiackas, L., Parsell, D., Dillon, L., Mitchell, D., Nunnery, L. A., and Poggie, Robert. 2001. Structure, metallurgy, and mechanical properties of a porous tantalum foam, Journal of biomedical materials research, 58, 180-7.

PRODUCTION AND CHARACTERIZATION OF B4C REINFORCED AA7075 COMPOSITE METALLIC FOAM

Year 2022, Volume: 10 Issue: 1, 1 - 6, 23.03.2022
https://doi.org/10.21923/jesd.912610

Abstract

In this study, the production and characterization of open-cell composite metal foam using the replica method, also known as polymer impregnation, was investigated. Composite powders were prepared by alloying in a planetary ball mill for 1 hour using AA7075 aluminum powder and 10% by weight B4C powder. Characterization and morphology analysis of the composite metal foam produced using the prepared composite powders were performed using XRD and SEM/EDS analyses. As a result of the analyses, it was observed that α-Al, B4C, C phase as a result of the polyurethane sponge not being completely removed from the structure, and secondary and tertiary phases such as Al3BC, AlB2, AlB12C2 and Al3B48C2 resulting from the sintering process were observed in the composite foam metal structure.

Project Number

FBA-2020-8469

References

  • Allen, B. C., Mote, M. W., and Sabroff, A. M., 1959. Method of making foamed metal USA. Patent 3087807A.
  • Ashby, M. F., Evans, A. G., Fleck, N. A. , Gibson, L. J. , Hutchinson, J. W. , and Wadley, H. N. G. . 2000. Metal Foams: A Design Guide Butterworth-Heinemann: USA.
  • Banhart, J., and Seeliger, H. W. 2008. Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications, Advanced Engineering Materials, 10, 793-802.
  • Baumeister, J., Banhart, J., and Weber, M. 1997. Aluminium foams for transport industry, Materials & Design, 18, 217-20.
  • Çinici, H., 2004. Toz metalurjisi yöntemi ile alüminyum esaslı metalik köpük üretimi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Dahil, L. 2017. Alüminyum Köpük Malzemenin Dinamik Davranışlarının İncelenmesi Afyon Kocatepe University Journal of Science and Engineering, 17: 352-56.
  • Danacı, E., 2011. Ti-6Al-4v Alaşımı ile Açık Hücreli Köpük Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Duarte, I., and Banhart, J. 2000. A study of aluminium foam formation—kinetics and microstructure, Acta Materialia, 48: 2349-62.
  • Gauthier, Maxime, Lefebvre, Louis-Philippe, Thomas, Yannig, and Bureau, Martin N. 2004. Production of Metallic Foams Having Open Porosity Using a Powder Metallurgy Approach, Materials and Manufacturing Processes, 19, 793-811.
  • Güven, Ş. Y. 2011. Toz Metalurjisi ve Metalik Köpükler, SDU Teknik Bilimler Dergisi, 1: 22-28.
  • Kashef, Sadaf, Lin, Jianguo, Hodgson, Peter D., and Yan, Wenyi. 2009. 'Mechanical Properties of Titanium Foam for Biomedical Applications.' in, Engineering Plasticity and Its Applications From Nanoscale to Macroscale WORLD SCIENTIFIC.
  • Kovtunov, A. I., Khokhlov, Yu Yu, and Myamin, S. V. 2015. Layered Composite Material Formation Technology for the Titanium–Foam Aluminum System, Metallurgist, 59, 339-41.
  • Lee, Min Ha, Kim, Ki Buem, Han, Jun Hee, Eckert, Jürgen, and Sordelet, Daniel J. 2008. High strength porous Ti–6Al–4V foams synthesized by solid state powder processing, Journal of Physics D: Applied Physics, 41, 105404.
  • Tan, P. J., Reid, S. R., Harrigan, J. J., Zou, Z., and Li, S. 2005. Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations, Journal of the Mechanics and Physics of Solids, 53, 2174-205.
  • Zaman, E., 2011. Açık Hücreli Al Köpük Üretimi Ve Karakterizasyonu, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Zardiackas, L., Parsell, D., Dillon, L., Mitchell, D., Nunnery, L. A., and Poggie, Robert. 2001. Structure, metallurgy, and mechanical properties of a porous tantalum foam, Journal of biomedical materials research, 58, 180-7.
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Güzide Meltem Lüle Şenöz 0000-0003-0870-1269

Rabia Çınar Daşkesen 0000-0002-0822-686X

Project Number FBA-2020-8469
Publication Date March 23, 2022
Submission Date June 3, 2021
Acceptance Date November 5, 2021
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Lüle Şenöz, G. M., & Çınar Daşkesen, R. (2022). PRODUCTION AND CHARACTERIZATION OF B4C REINFORCED AA7075 COMPOSITE METALLIC FOAM. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(1), 1-6. https://doi.org/10.21923/jesd.912610