Research Article
BibTex RIS Cite

TI–6AL–4V SICAK İŞLENMESİ ÜZERİNE ETKİLERİNİN SONLU ELEMANLAR YÖNTEMİ İLE İNCELENMESİ

Year 2022, Volume: 10 Issue: 2, 532 - 537, 30.06.2022
https://doi.org/10.21923/jesd.1012530

Abstract

Sıcak işleme olarak bilinen ısı destekli işleme, kesilmesi zor metallerin ve alaşımların işlenebilirliğini artırmak için alternatif bir işleme yöntemidir. Bu çalışma, endüstride yaygın olarak kullanılan Ti–6Al–4V alaşımının sıcak işlenmesinde kesme kuvvetlerinin sonlu elemanlar yöntemi ile incelenmesini içermektedir. İşleme deneyleri sonlu elemanlar analiz yazılımı olan ThirdWave AdvantEdge programında yapılmıştır. Bu analizlerde sabit kesme derinliğinde, kesme hızı (V), ilerleme hızı (f), ve sıcaklık parametreleri üçer seviye olarak belirlenmiştir. Deney listesi Taguchi L9 ortagonal dizilim ile oluşturulmuştur. L9 deney tasarımına göre kesme kuvvetleri değerleri kaydedilmiştir. Nümerik analiz sonuçlarına göre oda sıcaklığı koşullarının sıcak işleme koşullarına göre karşılaştırıldığında kesme kuvvetlerinin azaldığı görülmüştür. En düşük kesme kuvveti değeri 600°C sıcak işleme şartlarında gerçekleştirilen sayısal analizlerde ölçülmüştür.

References

  • Akasawa, T., Takeshita, H., & Uehara, K. (1987). Hot machining with cooled cutting tools. CIRP Annals, 36(1), 37-40.
  • Alatrushi, L. K. H., Bedir, F., & Yılmaz, N. (2020). The Basic Concepts of Micro-Milling Process And Its Review in Terms of Distinctive Parameters. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 643-654.
  • Elkhateeb, M. G., & Shin, Y. C. (2019). Investigation of the machining behavior of Ti6Al4V/TiC composites during conventional and laser-assisted machining. Journal of Manufacturing Science and Engineering, 141(5).
  • Ginta, T. L., & Amin, A. N. (2013). Thermally-assisted end milling of titanium alloy Ti-6Al-4V using induction heating. International Journal of Machining and Machinability of Materials, 14(2), 194-212.
  • Kalpakjian, S. (2001). Manufacturing engineering and technology: Pearson Education India.
  • Karagüzel, U. (2019). Ti6Al4V Alaşiminin Talaşli İmalati Sirasinda Termal Kamera ile Sicaklik Ölçümü ve Sonlu Elemanlarla Modellenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 265-271.
  • Leshock, C. E., Kim, J.-N., & Shin, Y. C. (2001). Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. International Journal of Machine Tools and Manufacture, 41(6), 877-897.
  • Luan, X., Meng, J., Huang, B., Dong, X., Hu, Y., Zhao, Y., . . . Qu, L. (2021). Machining characteristics of Ti6Al4V alloy in laser-assisted machining under minimum quantity lubricant. The International Journal of Advanced Manufacturing Technology, 112(3), 775-785.
  • Ma, J., Andrus, P., Condoor, S., & Lei, S. (2015). Numerical investigation of effects of cutting conditions and cooling schemes on tool performance in up milling of Ti-6AL-4V alloy. The International Journal of Advanced Manufacturing Technology, 78(1-4), 361-383.
  • Muhammad, R., Ahmed, N., Shariff, Y. M., & Silberschmidt, V. V. (2012). Finite-element analysis of forces in drilling of Ti-alloys at elevated temperature. Paper presented at the Solid State Phenomena.
  • Pan, Z., Liang, S. Y., Garmestani, H., & Shih, D. S. (2016). Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4 V alloy. The International Journal of Advanced Manufacturing Technology, 87(1), 859-866.
  • Parida, A., & Maity, K. (2016). Finite element method and experimental investigation of hot turning of Inconel 718. Paper presented at the Advanced Engineering Forum.
  • Parida, A. K., & Maity, K. (2019). Hot machining of Ti–6Al–4V: FE analysis and experimental validation. Sādhanā, 44(6), 1-6.
  • Rao, B., Dandekar, C. R., & Shin, Y. C. (2011). An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 211(2), 294-304.
  • Rashid, R. R., Bermingham, M., Sun, S., Wang, G., & Dargusch, M. (2013). The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precision Engineering, 37(2), 461-472.
  • Sahoo, A., Rout, A., & Das, D. (2015). Response surface and artificial neural network prediction model and optimization for surface roughness in machining. International Journal of Industrial Engineering Computations, 6(2), 229-240.
  • Shrot, A., & Bäker, M. (2012). Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science, 52(1), 298-304.
  • Smith, R. L., Schukken, Y. H., & Gröhn, Y. T. (2015). A new compartmental model of Mycobacterium avium subsp. paratuberculosis infection dynamics in cattle. Preventive veterinary medicine, 122(3), 298-305.
  • Sofuoğlu, M. A., Çakır, F. H., Gürgen, S., Orak, S., & Kuşhan, M. C. (2018). Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. The International Journal of Advanced Manufacturing Technology, 95(1), 83-97.
  • Sun, S., Brandt, M., Barnes, J., & Dargusch, M. (2011). Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1512-1527.
  • Ugur, L. (2019). 3D end milling of AISI 1040 finite element thermal analysis. Journal of Engineering Research and Applied Science, 8(2), 1286-1290.
  • Uğur, L., & Kazan, H. (2020). Finite element modeling of power consumption in turning of AISI 1040 steel. Journal of Engineering Research and Applied Science, 9(2), 1597-1601.
  • Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250-280.
  • Upadhyay, V., Jain, P., & Mehta, N. (2013). Machinability studies in hot machining of Ti-6Al-4V alloy. Paper presented at the Advanced Materials Research.
  • Zamani, H., Hermani, J. P., Sonderegger, B., & Sommitsch, C. (2012). Numerical and experimental investigation of laser assisted side milling of Ti6A14v alloy. Paper presented at the Materials Science and Technology Conference and Exhibition 2012, MS and T 2012.

EXAMINATION OF THE EFFECTS ON THE HOT MACHINING OF TI-6AL-4V WITH THE FINITE ELEMENT METHOD

Year 2022, Volume: 10 Issue: 2, 532 - 537, 30.06.2022
https://doi.org/10.21923/jesd.1012530

Abstract

Heat assisted machining, known as hot machining, is an alternative machining method to increase the machinability of hard-to-cut metals and alloys. This study includes the investigation of cutting forces in hot working of Ti-6Al-4V alloy, which is widely used in the industry, by finite element method. Processing experiments were performed with ThirdWave AdvantEdge, the finite element analysis software. Analyzes were determined at constant depth of cut, cutting speed (V), feed rate (f), and temperature parameters were determined as three levels. Experiment list was created with Taguchi L9 orthogonal array. Cutting forces values were recorded according to the L9 experimental design. According to the results of the numerical analysis, it was observed that the cutting forces decreased when the room temperature conditions were compared with the hot machining conditions. The lowest cutting force value was measured in numerical analyzes carried out at 600°C hot machining conditions.

References

  • Akasawa, T., Takeshita, H., & Uehara, K. (1987). Hot machining with cooled cutting tools. CIRP Annals, 36(1), 37-40.
  • Alatrushi, L. K. H., Bedir, F., & Yılmaz, N. (2020). The Basic Concepts of Micro-Milling Process And Its Review in Terms of Distinctive Parameters. Mühendislik Bilimleri ve Tasarım Dergisi, 8(2), 643-654.
  • Elkhateeb, M. G., & Shin, Y. C. (2019). Investigation of the machining behavior of Ti6Al4V/TiC composites during conventional and laser-assisted machining. Journal of Manufacturing Science and Engineering, 141(5).
  • Ginta, T. L., & Amin, A. N. (2013). Thermally-assisted end milling of titanium alloy Ti-6Al-4V using induction heating. International Journal of Machining and Machinability of Materials, 14(2), 194-212.
  • Kalpakjian, S. (2001). Manufacturing engineering and technology: Pearson Education India.
  • Karagüzel, U. (2019). Ti6Al4V Alaşiminin Talaşli İmalati Sirasinda Termal Kamera ile Sicaklik Ölçümü ve Sonlu Elemanlarla Modellenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 265-271.
  • Leshock, C. E., Kim, J.-N., & Shin, Y. C. (2001). Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. International Journal of Machine Tools and Manufacture, 41(6), 877-897.
  • Luan, X., Meng, J., Huang, B., Dong, X., Hu, Y., Zhao, Y., . . . Qu, L. (2021). Machining characteristics of Ti6Al4V alloy in laser-assisted machining under minimum quantity lubricant. The International Journal of Advanced Manufacturing Technology, 112(3), 775-785.
  • Ma, J., Andrus, P., Condoor, S., & Lei, S. (2015). Numerical investigation of effects of cutting conditions and cooling schemes on tool performance in up milling of Ti-6AL-4V alloy. The International Journal of Advanced Manufacturing Technology, 78(1-4), 361-383.
  • Muhammad, R., Ahmed, N., Shariff, Y. M., & Silberschmidt, V. V. (2012). Finite-element analysis of forces in drilling of Ti-alloys at elevated temperature. Paper presented at the Solid State Phenomena.
  • Pan, Z., Liang, S. Y., Garmestani, H., & Shih, D. S. (2016). Prediction of machining-induced phase transformation and grain growth of Ti-6Al-4 V alloy. The International Journal of Advanced Manufacturing Technology, 87(1), 859-866.
  • Parida, A., & Maity, K. (2016). Finite element method and experimental investigation of hot turning of Inconel 718. Paper presented at the Advanced Engineering Forum.
  • Parida, A. K., & Maity, K. (2019). Hot machining of Ti–6Al–4V: FE analysis and experimental validation. Sādhanā, 44(6), 1-6.
  • Rao, B., Dandekar, C. R., & Shin, Y. C. (2011). An experimental and numerical study on the face milling of Ti–6Al–4V alloy: Tool performance and surface integrity. Journal of Materials Processing Technology, 211(2), 294-304.
  • Rashid, R. R., Bermingham, M., Sun, S., Wang, G., & Dargusch, M. (2013). The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precision Engineering, 37(2), 461-472.
  • Sahoo, A., Rout, A., & Das, D. (2015). Response surface and artificial neural network prediction model and optimization for surface roughness in machining. International Journal of Industrial Engineering Computations, 6(2), 229-240.
  • Shrot, A., & Bäker, M. (2012). Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science, 52(1), 298-304.
  • Smith, R. L., Schukken, Y. H., & Gröhn, Y. T. (2015). A new compartmental model of Mycobacterium avium subsp. paratuberculosis infection dynamics in cattle. Preventive veterinary medicine, 122(3), 298-305.
  • Sofuoğlu, M. A., Çakır, F. H., Gürgen, S., Orak, S., & Kuşhan, M. C. (2018). Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. The International Journal of Advanced Manufacturing Technology, 95(1), 83-97.
  • Sun, S., Brandt, M., Barnes, J., & Dargusch, M. (2011). Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1512-1527.
  • Ugur, L. (2019). 3D end milling of AISI 1040 finite element thermal analysis. Journal of Engineering Research and Applied Science, 8(2), 1286-1290.
  • Uğur, L., & Kazan, H. (2020). Finite element modeling of power consumption in turning of AISI 1040 steel. Journal of Engineering Research and Applied Science, 9(2), 1597-1601.
  • Ulutan, D., & Ozel, T. (2011). Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3), 250-280.
  • Upadhyay, V., Jain, P., & Mehta, N. (2013). Machinability studies in hot machining of Ti-6Al-4V alloy. Paper presented at the Advanced Materials Research.
  • Zamani, H., Hermani, J. P., Sonderegger, B., & Sommitsch, C. (2012). Numerical and experimental investigation of laser assisted side milling of Ti6A14v alloy. Paper presented at the Materials Science and Technology Conference and Exhibition 2012, MS and T 2012.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Levent Uğur 0000-0003-3447-3191

Publication Date June 30, 2022
Submission Date October 20, 2021
Acceptance Date December 19, 2021
Published in Issue Year 2022 Volume: 10 Issue: 2

Cite

APA Uğur, L. (2022). TI–6AL–4V SICAK İŞLENMESİ ÜZERİNE ETKİLERİNİN SONLU ELEMANLAR YÖNTEMİ İLE İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(2), 532-537. https://doi.org/10.21923/jesd.1012530