Research Article
BibTex RIS Cite

YÜKSEK FIRIN CÜRUFU TEMELLİ ALKALİLERLE AKTİVİTE EDİLMİŞ HARÇLARDA GRAFİT TOZU KATKISININ MEKANİK ÖZELLİKLER VE ELEKTRİKSEL İLETKENLİK ÜZERİNDEKİ ETKİSİ

Year 2023, Volume: 11 Issue: 3, 1120 - 1130, 28.09.2023
https://doi.org/10.21923/jesd.1248611

Abstract

Bu çalışmada yüksek fırın cürufu kullanılarak üretilen alkalilerle aktivite edilmiş harç numunelerde grafit tozu katkısının mekanik özellikler ve elektrik iletkenliğine etkisi araştırılmıştır. Harç numunelerin hazırlanmasında bağlayıcı oranın ağırlıkça %0-%0,5-%1-%2 ve %4 oranında, (75) mikron boyutunda grafit tozu ikame edilmiştir. Yüksek Fırın cürufu ile üretilen harç numunelerde aktivatör olarak sodyum hidroksit ve sodyum silikat kullanılmış ve numuneler 24 saat 110⁰C’de ısıl küre tabi tutulmuştur. Kür süresini tamamlayan tüm harç numunelerin işlenebilirlik, birim ağırlık, elektriksel iletkenlik, eğilme ve basınç dayanımları belirlenmiştir. Ayrıca, alkalilerle aktivite edilmiş çimentolu sistemin de en iyi sonuçları veren numunelerin su emme ve boşluk oranlarını belirleyen deneyler yapılmıştır. Elde edilen sonuçlar; grafit tozunun alkalilerle aktivite edilmiş harç numunelerde %1 takviye oranında işlenebilirliğin iyileştiği, %1’in üzerindeki oranlarda olumsuz etki yaptığı görülmüştür. %1 grafit tozu katkısı eğilme ve basınç dayanımlarına pozitif katkı sağlarken, %4 grafit tozu takviyesi ise en yüksek elektriksel iletkenliği sağladığı anlaşılmıştır.

References

  • Abedini, M., & Zhang, C. (2021). Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique. Composite Structures, 260, 113473. https://doi.org/10.1016/J.COMPSTRUCT.2020.113473
  • Amer, I., Kohail, M., El-Feky, M. S., Rashad, A., & Khalaf, M. A. (2021). A review on alkali-activated slag concrete. Ain Shams Engineering Journal, 12(2), 1475–1499. https://doi.org/10.1016/J.ASEJ.2020.12.003
  • Anwar, M. S., Sujitha, B., & Vedalakshmi, R. (2014). Light-weight cementitious conductive anode for impressed current cathodic protection of steel reinforced concrete application. Construction and Building Materials, 71, 167–180. https://doi.org/10.1016/J.CONBUILDMAT.2014.08.032
  • Chen, C., Habert, G., Bouzidi, Y., & Jullien, A. (2010). Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production, 18(5), 478–485. https://doi.org/10.1016/J.JCLEPRO.2009.12.014
  • Costa, L. C., & Henry, F. (2011). DC electrical conductivity of carbon black polymer composites at low temperatures. Journal of Non-Crystalline Solids, 357(7), 1741–1744. https://doi.org/10.1016/J.JNONCRYSOL.2010.11.119
  • El-Dieb, A. S., El-Ghareeb, M. A., Abdel-Rahman, M. A. H., & Nasr, E. S. A. (2018). Multifunctional electrically conductive concrete using different fillers. Journal of Building Engineering, 15, 61–69. https://doi.org/10.1016/J.JOBE.2017.10.012
  • Haddad, A. S., & Chung, D. D. L. (2017). Decreasing the electric permittivity of cement by graphite particle incorporation. Carbon, 122, 702–709. https://doi.org/10.1016/J.CARBON.2017.06.088
  • Hasanbeigi, A., Menke, C., & Price, L. (2010). The CO2 abatement cost curve for the Thailand cement industry. Journal of Cleaner Production, 18(15), 1509–1518. https://doi.org/10.1016/J.JCLEPRO.2010.06.005
  • Huseien, G. F. (2023). A Review on Concrete Composites Modified with Nanoparticles. Journal of Composites Science, 7(2). https://doi.org/10.3390/jcs7020067
  • Jankovic, A., Valery, W., & Davis, E. (2004). Cement grinding optimisation. Minerals Engineering, 17(11–12), 1075–1081. https://doi.org/10.1016/J.MINENG.2004.06.031
  • Jung, M., Lee, Y. soon, Hong, S. G., & Moon, J. (2020). Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cement and Concrete Research, 131, 106017. https://doi.org/10.1016/J.CEMCONRES.2020.106017
  • Li, X., Liu, Y. M., Li, W. G., Li, C. Y., Sanjayan, J. G., Duan, W. H., & Li, Z. (2017). Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 145, 402–410. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.058
  • Lu, L., & Ouyang, D. (2017). Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials, 7(7), 1–14. https://doi.org/10.3390/nano7070187
  • Matalkah, F., & Soroushian, P. (2020). Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder. Construction and Building Materials, 249, 118773. https://doi.org/10.1016/J.CONBUILDMAT.2020.118773
  • McCarter, W. J., Starrs, G., & Chrisp, T. M. (2000). Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cement and Concrete Research, 30(9), 1395–1400. https://doi.org/10.1016/S0008-8846(00)00281-7
  • Mou, B., Zhao, F., Qiao, Q., Wang, L., Li, H., He, B., & Hao, Z. (2019). Flexural behavior of beam to column joints with or without an overlying concrete slab. Engineering Structures, 199, 109616. https://doi.org/10.1016/J.ENGSTRUCT.2019.109616
  • Peyvandi, A., Soroushian, P., Balachandra, A. M., & Sobolev, K. (2013). Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Construction and Building Materials, 47, 111–117. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.002
  • Salem, T. M. (2002). Electrical conductivity and rheological properties of ordinary Portland cement-silica fume and calcium hydroxide-silica fume pastes. Cement and Concrete Research, 32(9), 1473–1481. https://doi.org/10.1016/S0008-8846(02)00809-8
  • Sandanayake, M., Gunasekara, C., Law, D., Zhang, G., & Setunge, S. (2018). Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of Cleaner Production, 204, 399–408. https://doi.org/10.1016/J.JCLEPRO.2018.08.311
  • Standard, T. (2006). TS-En 196-1-ÇİMENTO DENEY METOTLARI- BÖLÜM 1: DAYANIM. 112.
  • Sun, J., Ma, Y., Li, J., Zhang, J., Ren, Z., & Wang, X. (2021). Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder. Journal of Building Engineering, 43, 102544. https://doi.org/10.1016/J.JOBE.2021.102544
  • Topçu, İ. B., Uygunoğlu, T., & Hocaoğlu, İ. (2018). Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Journal of Polytechnic, 0900(2), 257–264. https://doi.org/10.2339/politeknik.403970
  • Topçu, I. B., Uygunolu, T., & Hocaolu, I. (2012). Electrical conductivity of setting cement paste with different mineral admixtures. Construction and Building Materials, 28(1), 414–420. https://doi.org/10.1016/j.conbuildmat.2011.08.068
  • TS EN 1015-3: Masonry mortar-test methods-part 3: determination of fresh mortar consistency (with spreading table)." (2000) Turkish Standard. Türk StandartlarEnsti̇tüsü.
  • Tumidajski, P. J., Xie, P., Arnott, M., & Beaudoin, J. J. (2003). Overlay current in a conductive concrete snow melting system. Cement and Concrete Research, 33(11), 1807–1809. https://doi.org/10.1016/S0008-8846(03)00198-4
  • Uysal, S. (2012). Graphite: A Critical Raw Material and Turkey. Mining Turkey, 2(3), 42–47.
  • Wang, Q., Wang, J., Lu, C. X., Cui, X. Y., Li, S. Y., & Wang, X. (2016). Rheological behavior of fresh cement pastes with a graphene oxide additive. New Carbon Materials, 31(6), 574–584. https://doi.org/10.1016/S1872-5805(16)60033-1
  • Zhang, J., Xu, L., & Zhao, Q. (2017). Investigation of carbon fillers modified electrically conductive concrete as grounding electrodes for transmission towers: Computational model and case study. Construction and Building Materials, 145, 347–353. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.223

EFFECT OF GRAPHITE POWDER ADDITIVES ON MECHANICAL PROPERTIES AND ELECTRICAL CONDUCTIVITY IN BLAST FURNACE SLAG-BASED ALKALI-ACTIVATED MORTARS

Year 2023, Volume: 11 Issue: 3, 1120 - 1130, 28.09.2023
https://doi.org/10.21923/jesd.1248611

Abstract

In this study, the effect of graphite powder additive on mechanical properties and electrical conductivity of alkali-activated mortar samples produced using blast furnace slag was investigated. In the preparation of the mortar samples, graphite powder in (75) micron size was substituted at a rate of 0%-0.5-1%, 2% and 4% by weight of the binder. Sodium hydroxide and sodium silicate were used as activators in the mortar samples produced with Blast Furnace slag, and the samples were thermal cured at 110⁰C for 24 hours. Workability, unit weight, electrical conductivity, tendencies and compressive strength of all mortar samples that completed the curing period were determined. In addition, experiments were carried out to determine the water absorption and void ratios of the samples that gave the best results in the cementitious system activated with alkalis. The results obtained showed that the workability of the graphite powder was improved at 1% reinforcement rate in the mortar samples activated with alkalis, and it had a negative effect at the rates above 1%. It was understood that 1% graphite powder additive contributed positively to flexural and compressive strengths, while 4% graphite powder additive contributed provided the highest electrical conductivity.

References

  • Abedini, M., & Zhang, C. (2021). Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique. Composite Structures, 260, 113473. https://doi.org/10.1016/J.COMPSTRUCT.2020.113473
  • Amer, I., Kohail, M., El-Feky, M. S., Rashad, A., & Khalaf, M. A. (2021). A review on alkali-activated slag concrete. Ain Shams Engineering Journal, 12(2), 1475–1499. https://doi.org/10.1016/J.ASEJ.2020.12.003
  • Anwar, M. S., Sujitha, B., & Vedalakshmi, R. (2014). Light-weight cementitious conductive anode for impressed current cathodic protection of steel reinforced concrete application. Construction and Building Materials, 71, 167–180. https://doi.org/10.1016/J.CONBUILDMAT.2014.08.032
  • Chen, C., Habert, G., Bouzidi, Y., & Jullien, A. (2010). Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production, 18(5), 478–485. https://doi.org/10.1016/J.JCLEPRO.2009.12.014
  • Costa, L. C., & Henry, F. (2011). DC electrical conductivity of carbon black polymer composites at low temperatures. Journal of Non-Crystalline Solids, 357(7), 1741–1744. https://doi.org/10.1016/J.JNONCRYSOL.2010.11.119
  • El-Dieb, A. S., El-Ghareeb, M. A., Abdel-Rahman, M. A. H., & Nasr, E. S. A. (2018). Multifunctional electrically conductive concrete using different fillers. Journal of Building Engineering, 15, 61–69. https://doi.org/10.1016/J.JOBE.2017.10.012
  • Haddad, A. S., & Chung, D. D. L. (2017). Decreasing the electric permittivity of cement by graphite particle incorporation. Carbon, 122, 702–709. https://doi.org/10.1016/J.CARBON.2017.06.088
  • Hasanbeigi, A., Menke, C., & Price, L. (2010). The CO2 abatement cost curve for the Thailand cement industry. Journal of Cleaner Production, 18(15), 1509–1518. https://doi.org/10.1016/J.JCLEPRO.2010.06.005
  • Huseien, G. F. (2023). A Review on Concrete Composites Modified with Nanoparticles. Journal of Composites Science, 7(2). https://doi.org/10.3390/jcs7020067
  • Jankovic, A., Valery, W., & Davis, E. (2004). Cement grinding optimisation. Minerals Engineering, 17(11–12), 1075–1081. https://doi.org/10.1016/J.MINENG.2004.06.031
  • Jung, M., Lee, Y. soon, Hong, S. G., & Moon, J. (2020). Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cement and Concrete Research, 131, 106017. https://doi.org/10.1016/J.CEMCONRES.2020.106017
  • Li, X., Liu, Y. M., Li, W. G., Li, C. Y., Sanjayan, J. G., Duan, W. H., & Li, Z. (2017). Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste. Construction and Building Materials, 145, 402–410. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.058
  • Lu, L., & Ouyang, D. (2017). Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials, 7(7), 1–14. https://doi.org/10.3390/nano7070187
  • Matalkah, F., & Soroushian, P. (2020). Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder. Construction and Building Materials, 249, 118773. https://doi.org/10.1016/J.CONBUILDMAT.2020.118773
  • McCarter, W. J., Starrs, G., & Chrisp, T. M. (2000). Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cement and Concrete Research, 30(9), 1395–1400. https://doi.org/10.1016/S0008-8846(00)00281-7
  • Mou, B., Zhao, F., Qiao, Q., Wang, L., Li, H., He, B., & Hao, Z. (2019). Flexural behavior of beam to column joints with or without an overlying concrete slab. Engineering Structures, 199, 109616. https://doi.org/10.1016/J.ENGSTRUCT.2019.109616
  • Peyvandi, A., Soroushian, P., Balachandra, A. M., & Sobolev, K. (2013). Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Construction and Building Materials, 47, 111–117. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.002
  • Salem, T. M. (2002). Electrical conductivity and rheological properties of ordinary Portland cement-silica fume and calcium hydroxide-silica fume pastes. Cement and Concrete Research, 32(9), 1473–1481. https://doi.org/10.1016/S0008-8846(02)00809-8
  • Sandanayake, M., Gunasekara, C., Law, D., Zhang, G., & Setunge, S. (2018). Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of Cleaner Production, 204, 399–408. https://doi.org/10.1016/J.JCLEPRO.2018.08.311
  • Standard, T. (2006). TS-En 196-1-ÇİMENTO DENEY METOTLARI- BÖLÜM 1: DAYANIM. 112.
  • Sun, J., Ma, Y., Li, J., Zhang, J., Ren, Z., & Wang, X. (2021). Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder. Journal of Building Engineering, 43, 102544. https://doi.org/10.1016/J.JOBE.2021.102544
  • Topçu, İ. B., Uygunoğlu, T., & Hocaoğlu, İ. (2018). Yüksek Fırın Cüruf Katkılı Çimento Pastalarının Elektriksel Özdirençlerinin Araştırılması. Journal of Polytechnic, 0900(2), 257–264. https://doi.org/10.2339/politeknik.403970
  • Topçu, I. B., Uygunolu, T., & Hocaolu, I. (2012). Electrical conductivity of setting cement paste with different mineral admixtures. Construction and Building Materials, 28(1), 414–420. https://doi.org/10.1016/j.conbuildmat.2011.08.068
  • TS EN 1015-3: Masonry mortar-test methods-part 3: determination of fresh mortar consistency (with spreading table)." (2000) Turkish Standard. Türk StandartlarEnsti̇tüsü.
  • Tumidajski, P. J., Xie, P., Arnott, M., & Beaudoin, J. J. (2003). Overlay current in a conductive concrete snow melting system. Cement and Concrete Research, 33(11), 1807–1809. https://doi.org/10.1016/S0008-8846(03)00198-4
  • Uysal, S. (2012). Graphite: A Critical Raw Material and Turkey. Mining Turkey, 2(3), 42–47.
  • Wang, Q., Wang, J., Lu, C. X., Cui, X. Y., Li, S. Y., & Wang, X. (2016). Rheological behavior of fresh cement pastes with a graphene oxide additive. New Carbon Materials, 31(6), 574–584. https://doi.org/10.1016/S1872-5805(16)60033-1
  • Zhang, J., Xu, L., & Zhao, Q. (2017). Investigation of carbon fillers modified electrically conductive concrete as grounding electrodes for transmission towers: Computational model and case study. Construction and Building Materials, 145, 347–353. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.223
There are 28 citations in total.

Details

Primary Language English
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ahmet Filazi 0000-0002-5190-0741

Rustem Yilmazel 0000-0002-5564-4837

Muharrem Pul 0000-0002-0629-3516

Publication Date September 28, 2023
Submission Date February 7, 2023
Acceptance Date July 18, 2023
Published in Issue Year 2023 Volume: 11 Issue: 3

Cite

APA Filazi, A., Yilmazel, R., & Pul, M. (2023). EFFECT OF GRAPHITE POWDER ADDITIVES ON MECHANICAL PROPERTIES AND ELECTRICAL CONDUCTIVITY IN BLAST FURNACE SLAG-BASED ALKALI-ACTIVATED MORTARS. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(3), 1120-1130. https://doi.org/10.21923/jesd.1248611