Research Article
BibTex RIS Cite
Year 2021, Volume: 7 Issue: 4, 309 - 328, 01.10.2021
https://doi.org/10.21891/jeseh.961060

Abstract

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri

Project Number

04 / 2018-03

Thanks

Gazi üniversitesi Bilimsel Araştırma Projeleri birimine desteklerinden dolayı teşekkür ederiz.

References

  • Acar, D. (2018). FETEMM eğitiminin ilkokul 4. sınıf öğrencilerinin akademik başarı, eleştirel düşünme ve problem çözme becerisi üzerine etkisi[The effect of STEM education on the academic success, critical thinking and problem solving skills of the elementary 4th grade students]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Adams, M. (2015). A Cultural historical theoretical perspective of discourse and design in the science classroom. Cultural Studies of Science Education, 10(2), 329-338.
  • Altan, E. B., Yamak, H., & Kırıkkaya, E. B. (2016). FeTeMM eğitim yaklaşımının öğretmen eğitiminde uygulanmasına yönelik bir öneri: Tasarım temelli fen eğitimi[A Proposal of the STEM Education for Teacher Training: Design Based Science Education]. Trakya Journal of Education, 6(2), 212-232.
  • Altaş, S. (2018). STEM eğitimi yaklaşımının sınıf öğretmeni adaylarının mühendislik tasarım süreçlerine, mühendislik ve teknoloji algılarına etkisinin incelenmesi[Investigation of the effects of STEM education approach on the perceptions of classroom teaching candidates about engineering design processes and about engineering and technology]. Master Thesis, Muş Alparslan University, Institute of Science, Muş.
  • Aslan-Tutak, F., Akaygün S., & Tezsezen S. (2017). İşbirlikli FeTeMM (Fen, Teknoloji, Mühendislik, Matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının FeTeMM farkındalıklarının incelenmesi [Collaboratively Learning to Teach STEM: Changein Participating Preservice Teachers’ Awareness of STEM]. Hacettepe University Journal of Education, 32(4), 794-816.
  • Batı, K. (2014). Modellemeye dayalı fen eğitiminin etkililiği; öğrencilerin bilimin doğası görüşleri ile eleştirel düşünme becerilerine etkisi[The effectiveness of modeling based elementary science education; It's effects on students? views about nature of science and critical thinking abilities]. Doctoral Thesis, Hacettepe University Institute of Educational Sciences, Ankara.
  • Bozkurt, E. (2014). Mühendı̇slı̇k tasarım temellı̇ fen eğı̇tı̇mı̇nı̇n fen bı̇lgı̇sı̇ öğretmen adaylarinin karar verme becerı̇sı̇, bı̇lı̇sel süreç becerı̇lerı̇ ve sürece yönelı̇k algılarına etkı̇sı̇[The effect of engineering design based science instruction on science teacher candidates' decision making skills, science process skills and perceptions about the process]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Brown, C., Taylor, C., & Ponambalum, L. (2016). Using design-based research to improve the lesson study approach to professional development in camden (London). London Review of Education, 14(2), 4-24.
  • Büyüköztürk, S., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, S., & Demirel, F. (2012). Bilimsel Araştırma Yöntemleri[Scientific Research Methods]. (18nd Ed.). Ankara: Pegem Academy.
  • Bybee, R. W., (2010). Advancing STEM Education. A 2020 Vision. Technology and Engineering Teacher, 70(1) 30-35. Christensen, L. B. Johnson, B., & Turner, L. A. (2015). Araştırma yöntemleri: Desen ve analiz[Research methods: Pattern and analysis]. Ankara: Anı Publishing.
  • Cohen, J. C. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
  • Çorlu, M. S., & Çallı, E. (2017). STEM kuram ve uygulamalarıyla fen, teknoloji, mühendislik ve matematik eğitimi [Science, technology, engineering and mathematics education with STEM theory and applications]. İstanbul: Pusula Publishing.
  • Dağlıoğlu, H. E. (2010). Yaratıcılık, hayal gücü ve zekâ ilişkisi [Creativity, imagination and intelligence]. E. Çelebi Öncü (Ed.) Erken çocukluk döneminde yaratıcılık ve geliştirilmesi[Creativity and development in early childhood] in (s. 48-82). Ankara: Pegem Academy.
  • DiFrancesca, D., Lee, C., & McIntyre, E. (2014). Where is the" E" in STEM for young children? engineering design education in an elementary teacher preparation program. Issues in Teacher Education, 23(1), 49-64.
  • Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. USA: ASCD.
  • Dym, C. L., Wood, W. H., & Scott, M. J. (2002). Rank ordering engineering designs: pairwise comparison charts and Borda counts. Research in Engineering Design, 13(4), 236-242.
  • English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourthgrade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 14.
  • Ercan, S. (2014). Fen eğitiminde mühendislik uygulamalarının kullanımı: tasarım temelli fen eğitimi[The use of engineering applications in science education: design based science education]. Necatibey Faculty of Education, Electronic Journal of Science and Mathematics Education (EFMED),9(1), 128-164.
  • Eroğlu, S., & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkındaki görüşleri[Ideas of Science Teachers took STEM Education about STEM based Activities]. Journal of Qualitative Research in Education, 4(3), 43-67.
  • Fortus, D., Dershimer, R. C., Krajcik, J. S., Marx, R. W., ve Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.
  • Genek, S. (2018). STEM eğitimi uygulanan ilkokul öğrencilerinin bilimsel yaratıcılık düzeylerinin incelenmesi[Investigation of scientific creativity levels of elementary school students who enrolled in a STEM program]. Master Thesis, Bahçeşehir University, Institute of Educational Sciences, İstanbul.
  • Gencer, A. S. (2017). Fen eğitiminde bilim ve mühendislik uygulaması: Fırıldak Etkinliği. Journal of Inquiry Based Activities, 5(1), 1-19.
  • Gravetter, F. L., & Wallnau, L. B. (2013). Statistics for the behavioral sciences (9th ed.). Belmont, CA: Wadsworth.
  • Grosul, M. (2010). In search of the creative scientific personality. Master’s Thesis, San Jose State University The Faculty of the Department of Psychology, California.
  • Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitimi temelli etkinliklerin fen bilgisi öğretmen adaylarının eleştirel ve yaratıcı düşünme becerilerine etkisi[The effect of science, technology, engineering and mathematics (STEM) education based activities on prospective science teachers' critical and creative thinking skills]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing engineering design into high school STEM courses. Publications, 1-7.URL address: https://digitalcommons.usu.edu/ncete_publications/165.
  • Jonassen, D. H. (2011). Design problems for secondary students. National Center for Engineering and Technology Education.
  • Kadayıfçı, H. (2008). Yaratıcı düşünmeye dayalı öğretim modelinin öğrencilerin maddelerin ayrılması ile ilgili kavramları anlamalarına ve bilimsel yaratıcılıklarına etkisi[The effect of an instructional model based on creative thinking on students' conceptual understanding of separation of matter subject and their scientific creativity]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Kaptan, F., & Kuşakcı, F. (2002). Fen öğretiminde beyin fırtınası tekniğinin öğrenci yaratıcılığına etkisi [The effect of brainstorming technique on student creativity in science teaching]. V. National Science and Mathematics Education Congress Proceedings,197-202.
  • Karahan, E., Canbazoglu-Bilici, S., & Unal, A. (2015). Integration of media design processes in science, technology, engineering, and mathematics (STEM) education. Eurasian Journal of Educational Research, 60, 221-240.
  • Karışan, D., & Yurdakul, Y. (2017). Mikroişlemci destekli fen-teknoloji-mühendislik matematik (STEM) Uygulamalarının 6. Sınıf Öğrencilerinin Bu Alanlara Yönelik Tutumlarına Etkisi[The Effects of Microprocessors Based Science Technology Engineering and Mathemetics (STEM) Investigations on 6th Grade Students’ Attitudes Towards These Subject Areas]. Adnan Menderes University Faculty of Education Journal of Educational Sciences, 8(1), 37-52.
  • Kaya, M. E. (2018). STEM uygulamalarının fen bilgisi öğretmen adayları öz düzenleme ve yaratıcılığına etkisi [The impact on the creativity and self-educational skills of student education teacher candidates]. Master Thesis, Erzincan Binali Yıldırım University, Institute of Science, Erzincan.
  • Kayser, T. A. (2011). Building team power: how to unleash the collaborative genius of teams for increased engagement, productivity, and results. NY: McGraw-Hill.
  • Koçak, B. (2019). Fen bilimleri, matematik ve sınıf öğretmen adaylarının FeTeMM öğretimine ilişkin yönelimleri[Science, mathematics and primary preservice teachers' intention on STEM teaching]. Master Thesis, Akdeniz University, Institute of Educational Sciences, Antalya.
  • Koehler, C., Faraclas, E., Sanchez, S., Latif, S. K., & Kazerounian, K. (2005). Engineering frameworks for a high school setting: guidelines for technical literacy for high school students. ASEE Conference & Exposition, page,10, 1.
  • Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., & Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into practice. The Journal of the Learning Sciences, 12(4), 495-547.
  • Koray, Ö. (2004). Fen eğitiminde yaratıcı düşünmeye dayalı öğretmen adaylarının yaratıcılık düzeylerine etkisi[The influence of science education based on creative thinking on creativity of preservice teachers]. Educational Administration: Theory and Practice, 10(4), 580-599.
  • Lin, C., Hu, W., Adey, P., & Shen, J. (2003). The influence of CASE on scientific creativity. Research in Science Education, 33(2), 143-162.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: a sourcebook. Uk: Sage.
  • MoNE (2013). T.C. Milli Eğitim Bakanlığı Talim Terbiye Kurulu Başkanlığı,ilköğretim fen bilimleri dersi (4, 5, 6, 7 ve 8. Sınıflar) öğretim programı[Board of Education and Discipline, elementary science lesson (4th, 5th, 6th, 7th and 8th grades) curriculum]. Ankara: Devlet Kitapları Müdürlüğü.
  • MoNE (2018). T.C. Milli Eğitim Bakanlığı Talim Terbiye Kurulu Başkanlığı, ilköğretim fen bilimleri dersi (4, 5, 6, 7 ve 8. Sınıflar) öğretim programı[Board of Education and Discipline, elementary science lesson (4th, 5th, 6th, 7th and 8th grades) curriculum]. Ankara: Devlet Kitapları Müdürlüğü.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 2.
  • National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G., & Feder, M. Washington, DC: National Academies. National Aeronautics and Space Administration [NASA], 2015. Let It Glide: Facilitation Guide. URL address:https://www.nasa.gov/sites/default/files/files/EDC02_Let_It_Glide_Facilitation_Guide_FINAL.pdf.
  • Resnick, M. (2002). Rethinking Learning in The Digital Age. In G. Kirkman (Ed.) The Global information technology report: Readiness for he networked World (pp. 32-37). Oxford: Oxford University.
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: Innovations and Research, 5(3/4), 17.
  • Rosenthal, R., & Rosnow, R. L. (1991). Essentials of behavioral research: Methods and data analysis (2nd Ed.). New York: McGraw Hill.
  • Salvucci, S., Walter, E., Conley, V., Fink, S., & Saba, M. (1997). Measurement Error Studies at the National Center for Education Statistics. (NCES 97-464). Washington, DC: National Center for Education Statistics.
  • Schwartz, R. S., Akom, G., Skjold, B., Hong, H. H., Kagumba, R., & Huang, F. (2007, April). A change in perspective: Science education graduate students’ reflections on learning about NOS. In International meeting of the National Association for Research in Science Teaching. New Orleans, LA.
  • Siew, N. M., Amir, N., & Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. Springer Plus, 4(1), 8.
  • Seckin-Kapucu, M. & Karakaya-Ozyer, K. (2019). Secondary school studensts’ selfassessment of design process: A study on scale development and prediction by various variables. International Online Journal of Educational Sciences, 11 (4), 296-310.
  • Tress, G., Tress, B., & Fry, G. (2007). Analysis of the barriers to integration in landscaperesearch projects. Land use policy, 24(2), 374-385.
  • Uzel, L. (2019). 6. sınıf madde ve ısı ünitesinde gerçekleştirilen mühendislik tasarım temelli uygulamaların öğrencilerin problem çözme ve tasarım becerilerine etkisinin değerlendirilmesi[Evaluation of the impact of engineering design-based activities performed in 6th-grade "matter and heat" unit on problem-solving and design skills]. Master Thesis, Aksaray University Institute of Science, Aksaray.
  • Vasquez, J. A., Comer, M., & Sneider, C. (2013). STEM Lesson Essentials, Grades 3-8: Integrating Science, Technology, Engineering, and Mathematics (1st ed.). Portsmouth, NH: Heinemann.
  • Wendell, K. B. (2008). The Theoretical and empirical basis for design-based science instruction for children. Doctoral Dissertation, Tufts Universty, Massachusetts.
  • Wendell, K.B., & Rogers, C. (2013). Engineering design‐based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540.
  • Yavuz, Ü. (2019). İlkokul fen bilimleri dersinin fen, teknoloji, mühendislik ve matematik (FETEMM) etkinlikleri ile işlenmesi[The implementation of the primary school science courses with science, technology, engineering and mathematics (STEM) activities]. Master Thesis, Afyon Kocatepe University Institute of Social Sciences, Afyon.
  • Yıldırım, B., & Türk, C. (2018). Sınıf öğretmeni adaylarının STEM eğitimine yönelik görüşleri: uygulamalı bir çalışma[Pre-Service Primary School Teachers’ Views about STEM Education: An Applied Study]. Trakya Journal of Education, 8(2), 195-213.
  • Yıldırım, B. (2016). 7. Sınıf fen bilimleri dersine entegre edilmiş fen, teknoloji, mühendislik, matematik (STEM) uygulamaları ve tam öğrenmenin etkilerinin incelenmesi[An examination of the effects of science, technology, engineering, mathematics (STEM) applications and mastery learning integrated into the 7th grade science course]. Doctoral Thesis, Gazi University, Institute of Educational Sciences Ankara.

The Effect of Engineering Design Based Science Teaching on Decision Making, Scientific Creativity and Design Skills of Classroom Teacher Candidates

Year 2021, Volume: 7 Issue: 4, 309 - 328, 01.10.2021
https://doi.org/10.21891/jeseh.961060

Abstract

This study aims to examine the effects of engineering design-based science teaching (EDBST) on classroom teacher candidates’ decision-making skills, scientific creativity and engineering design-based process skills. The random design of the quantitative approach with a pretest-posttest control group was used in the study. The study group consists of 60 teacher candidates convenient sampling method and studying at the Faculty of Education Department of Classroom Education of a state university in Ankara in the 2017-2018 academic year. The implementations of the study continued in the Science and Technology Laboratory Applications-II course for 14 weeks in accordance with the content integration of STEM. Study data were calculated through dependent and independent groups t-test, one-way repeated measures ANOVA and multivariate variance analysis (MANOVA). When the results of the study were examined, it was seen that the skills of the classroom teacher candidates, where the courses were taught with engineering design-based science teaching, developed positively.

Project Number

04 / 2018-03

References

  • Acar, D. (2018). FETEMM eğitiminin ilkokul 4. sınıf öğrencilerinin akademik başarı, eleştirel düşünme ve problem çözme becerisi üzerine etkisi[The effect of STEM education on the academic success, critical thinking and problem solving skills of the elementary 4th grade students]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Adams, M. (2015). A Cultural historical theoretical perspective of discourse and design in the science classroom. Cultural Studies of Science Education, 10(2), 329-338.
  • Altan, E. B., Yamak, H., & Kırıkkaya, E. B. (2016). FeTeMM eğitim yaklaşımının öğretmen eğitiminde uygulanmasına yönelik bir öneri: Tasarım temelli fen eğitimi[A Proposal of the STEM Education for Teacher Training: Design Based Science Education]. Trakya Journal of Education, 6(2), 212-232.
  • Altaş, S. (2018). STEM eğitimi yaklaşımının sınıf öğretmeni adaylarının mühendislik tasarım süreçlerine, mühendislik ve teknoloji algılarına etkisinin incelenmesi[Investigation of the effects of STEM education approach on the perceptions of classroom teaching candidates about engineering design processes and about engineering and technology]. Master Thesis, Muş Alparslan University, Institute of Science, Muş.
  • Aslan-Tutak, F., Akaygün S., & Tezsezen S. (2017). İşbirlikli FeTeMM (Fen, Teknoloji, Mühendislik, Matematik) eğitimi uygulaması: Kimya ve matematik öğretmen adaylarının FeTeMM farkındalıklarının incelenmesi [Collaboratively Learning to Teach STEM: Changein Participating Preservice Teachers’ Awareness of STEM]. Hacettepe University Journal of Education, 32(4), 794-816.
  • Batı, K. (2014). Modellemeye dayalı fen eğitiminin etkililiği; öğrencilerin bilimin doğası görüşleri ile eleştirel düşünme becerilerine etkisi[The effectiveness of modeling based elementary science education; It's effects on students? views about nature of science and critical thinking abilities]. Doctoral Thesis, Hacettepe University Institute of Educational Sciences, Ankara.
  • Bozkurt, E. (2014). Mühendı̇slı̇k tasarım temellı̇ fen eğı̇tı̇mı̇nı̇n fen bı̇lgı̇sı̇ öğretmen adaylarinin karar verme becerı̇sı̇, bı̇lı̇sel süreç becerı̇lerı̇ ve sürece yönelı̇k algılarına etkı̇sı̇[The effect of engineering design based science instruction on science teacher candidates' decision making skills, science process skills and perceptions about the process]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3-11.
  • Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  • Brown, C., Taylor, C., & Ponambalum, L. (2016). Using design-based research to improve the lesson study approach to professional development in camden (London). London Review of Education, 14(2), 4-24.
  • Büyüköztürk, S., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, S., & Demirel, F. (2012). Bilimsel Araştırma Yöntemleri[Scientific Research Methods]. (18nd Ed.). Ankara: Pegem Academy.
  • Bybee, R. W., (2010). Advancing STEM Education. A 2020 Vision. Technology and Engineering Teacher, 70(1) 30-35. Christensen, L. B. Johnson, B., & Turner, L. A. (2015). Araştırma yöntemleri: Desen ve analiz[Research methods: Pattern and analysis]. Ankara: Anı Publishing.
  • Cohen, J. C. (1988). Statistical power analysis for the behavioral sciences (2nd Ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
  • Çorlu, M. S., & Çallı, E. (2017). STEM kuram ve uygulamalarıyla fen, teknoloji, mühendislik ve matematik eğitimi [Science, technology, engineering and mathematics education with STEM theory and applications]. İstanbul: Pusula Publishing.
  • Dağlıoğlu, H. E. (2010). Yaratıcılık, hayal gücü ve zekâ ilişkisi [Creativity, imagination and intelligence]. E. Çelebi Öncü (Ed.) Erken çocukluk döneminde yaratıcılık ve geliştirilmesi[Creativity and development in early childhood] in (s. 48-82). Ankara: Pegem Academy.
  • DiFrancesca, D., Lee, C., & McIntyre, E. (2014). Where is the" E" in STEM for young children? engineering design education in an elementary teacher preparation program. Issues in Teacher Education, 23(1), 49-64.
  • Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. USA: ASCD.
  • Dym, C. L., Wood, W. H., & Scott, M. J. (2002). Rank ordering engineering designs: pairwise comparison charts and Borda counts. Research in Engineering Design, 13(4), 236-242.
  • English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourthgrade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 14.
  • Ercan, S. (2014). Fen eğitiminde mühendislik uygulamalarının kullanımı: tasarım temelli fen eğitimi[The use of engineering applications in science education: design based science education]. Necatibey Faculty of Education, Electronic Journal of Science and Mathematics Education (EFMED),9(1), 128-164.
  • Eroğlu, S., & Bektaş, O. (2016). STEM eğitimi almış fen bilimleri öğretmenlerinin STEM temelli ders etkinlikleri hakkındaki görüşleri[Ideas of Science Teachers took STEM Education about STEM based Activities]. Journal of Qualitative Research in Education, 4(3), 43-67.
  • Fortus, D., Dershimer, R. C., Krajcik, J. S., Marx, R. W., ve Mamlok-Naaman, R. (2004). Design-based science and student learning. Journal of Research in Science Teaching, 41(10), 1081-1110.
  • Genek, S. (2018). STEM eğitimi uygulanan ilkokul öğrencilerinin bilimsel yaratıcılık düzeylerinin incelenmesi[Investigation of scientific creativity levels of elementary school students who enrolled in a STEM program]. Master Thesis, Bahçeşehir University, Institute of Educational Sciences, İstanbul.
  • Gencer, A. S. (2017). Fen eğitiminde bilim ve mühendislik uygulaması: Fırıldak Etkinliği. Journal of Inquiry Based Activities, 5(1), 1-19.
  • Gravetter, F. L., & Wallnau, L. B. (2013). Statistics for the behavioral sciences (9th ed.). Belmont, CA: Wadsworth.
  • Grosul, M. (2010). In search of the creative scientific personality. Master’s Thesis, San Jose State University The Faculty of the Department of Psychology, California.
  • Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitimi temelli etkinliklerin fen bilgisi öğretmen adaylarının eleştirel ve yaratıcı düşünme becerilerine etkisi[The effect of science, technology, engineering and mathematics (STEM) education based activities on prospective science teachers' critical and creative thinking skills]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D., & Carberry, A. (2011). Infusing engineering design into high school STEM courses. Publications, 1-7.URL address: https://digitalcommons.usu.edu/ncete_publications/165.
  • Jonassen, D. H. (2011). Design problems for secondary students. National Center for Engineering and Technology Education.
  • Kadayıfçı, H. (2008). Yaratıcı düşünmeye dayalı öğretim modelinin öğrencilerin maddelerin ayrılması ile ilgili kavramları anlamalarına ve bilimsel yaratıcılıklarına etkisi[The effect of an instructional model based on creative thinking on students' conceptual understanding of separation of matter subject and their scientific creativity]. Doctoral Thesis, Gazi University, Institute of Educational Sciences, Ankara.
  • Kaptan, F., & Kuşakcı, F. (2002). Fen öğretiminde beyin fırtınası tekniğinin öğrenci yaratıcılığına etkisi [The effect of brainstorming technique on student creativity in science teaching]. V. National Science and Mathematics Education Congress Proceedings,197-202.
  • Karahan, E., Canbazoglu-Bilici, S., & Unal, A. (2015). Integration of media design processes in science, technology, engineering, and mathematics (STEM) education. Eurasian Journal of Educational Research, 60, 221-240.
  • Karışan, D., & Yurdakul, Y. (2017). Mikroişlemci destekli fen-teknoloji-mühendislik matematik (STEM) Uygulamalarının 6. Sınıf Öğrencilerinin Bu Alanlara Yönelik Tutumlarına Etkisi[The Effects of Microprocessors Based Science Technology Engineering and Mathemetics (STEM) Investigations on 6th Grade Students’ Attitudes Towards These Subject Areas]. Adnan Menderes University Faculty of Education Journal of Educational Sciences, 8(1), 37-52.
  • Kaya, M. E. (2018). STEM uygulamalarının fen bilgisi öğretmen adayları öz düzenleme ve yaratıcılığına etkisi [The impact on the creativity and self-educational skills of student education teacher candidates]. Master Thesis, Erzincan Binali Yıldırım University, Institute of Science, Erzincan.
  • Kayser, T. A. (2011). Building team power: how to unleash the collaborative genius of teams for increased engagement, productivity, and results. NY: McGraw-Hill.
  • Koçak, B. (2019). Fen bilimleri, matematik ve sınıf öğretmen adaylarının FeTeMM öğretimine ilişkin yönelimleri[Science, mathematics and primary preservice teachers' intention on STEM teaching]. Master Thesis, Akdeniz University, Institute of Educational Sciences, Antalya.
  • Koehler, C., Faraclas, E., Sanchez, S., Latif, S. K., & Kazerounian, K. (2005). Engineering frameworks for a high school setting: guidelines for technical literacy for high school students. ASEE Conference & Exposition, page,10, 1.
  • Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., & Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design (tm) into practice. The Journal of the Learning Sciences, 12(4), 495-547.
  • Koray, Ö. (2004). Fen eğitiminde yaratıcı düşünmeye dayalı öğretmen adaylarının yaratıcılık düzeylerine etkisi[The influence of science education based on creative thinking on creativity of preservice teachers]. Educational Administration: Theory and Practice, 10(4), 580-599.
  • Lin, C., Hu, W., Adey, P., & Shen, J. (2003). The influence of CASE on scientific creativity. Research in Science Education, 33(2), 143-162.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: a sourcebook. Uk: Sage.
  • MoNE (2013). T.C. Milli Eğitim Bakanlığı Talim Terbiye Kurulu Başkanlığı,ilköğretim fen bilimleri dersi (4, 5, 6, 7 ve 8. Sınıflar) öğretim programı[Board of Education and Discipline, elementary science lesson (4th, 5th, 6th, 7th and 8th grades) curriculum]. Ankara: Devlet Kitapları Müdürlüğü.
  • MoNE (2018). T.C. Milli Eğitim Bakanlığı Talim Terbiye Kurulu Başkanlığı, ilköğretim fen bilimleri dersi (4, 5, 6, 7 ve 8. Sınıflar) öğretim programı[Board of Education and Discipline, elementary science lesson (4th, 5th, 6th, 7th and 8th grades) curriculum]. Ankara: Devlet Kitapları Müdürlüğü.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research (J-PEER), 4(1), 2.
  • National Academy of Engineering [NAE] & National Research Council [NRC] (2009). Engineering in K-12 education understanding the status and improving the prospects. Edt. Katehi, L., Pearson, G., & Feder, M. Washington, DC: National Academies. National Aeronautics and Space Administration [NASA], 2015. Let It Glide: Facilitation Guide. URL address:https://www.nasa.gov/sites/default/files/files/EDC02_Let_It_Glide_Facilitation_Guide_FINAL.pdf.
  • Resnick, M. (2002). Rethinking Learning in The Digital Age. In G. Kirkman (Ed.) The Global information technology report: Readiness for he networked World (pp. 32-37). Oxford: Oxford University.
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education: Innovations and Research, 5(3/4), 17.
  • Rosenthal, R., & Rosnow, R. L. (1991). Essentials of behavioral research: Methods and data analysis (2nd Ed.). New York: McGraw Hill.
  • Salvucci, S., Walter, E., Conley, V., Fink, S., & Saba, M. (1997). Measurement Error Studies at the National Center for Education Statistics. (NCES 97-464). Washington, DC: National Center for Education Statistics.
  • Schwartz, R. S., Akom, G., Skjold, B., Hong, H. H., Kagumba, R., & Huang, F. (2007, April). A change in perspective: Science education graduate students’ reflections on learning about NOS. In International meeting of the National Association for Research in Science Teaching. New Orleans, LA.
  • Siew, N. M., Amir, N., & Chong, C. L. (2015). The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science. Springer Plus, 4(1), 8.
  • Seckin-Kapucu, M. & Karakaya-Ozyer, K. (2019). Secondary school studensts’ selfassessment of design process: A study on scale development and prediction by various variables. International Online Journal of Educational Sciences, 11 (4), 296-310.
  • Tress, G., Tress, B., & Fry, G. (2007). Analysis of the barriers to integration in landscaperesearch projects. Land use policy, 24(2), 374-385.
  • Uzel, L. (2019). 6. sınıf madde ve ısı ünitesinde gerçekleştirilen mühendislik tasarım temelli uygulamaların öğrencilerin problem çözme ve tasarım becerilerine etkisinin değerlendirilmesi[Evaluation of the impact of engineering design-based activities performed in 6th-grade "matter and heat" unit on problem-solving and design skills]. Master Thesis, Aksaray University Institute of Science, Aksaray.
  • Vasquez, J. A., Comer, M., & Sneider, C. (2013). STEM Lesson Essentials, Grades 3-8: Integrating Science, Technology, Engineering, and Mathematics (1st ed.). Portsmouth, NH: Heinemann.
  • Wendell, K. B. (2008). The Theoretical and empirical basis for design-based science instruction for children. Doctoral Dissertation, Tufts Universty, Massachusetts.
  • Wendell, K.B., & Rogers, C. (2013). Engineering design‐based science, science content performance, and science attitudes in elementary school. Journal of Engineering Education, 102(4), 513-540.
  • Yavuz, Ü. (2019). İlkokul fen bilimleri dersinin fen, teknoloji, mühendislik ve matematik (FETEMM) etkinlikleri ile işlenmesi[The implementation of the primary school science courses with science, technology, engineering and mathematics (STEM) activities]. Master Thesis, Afyon Kocatepe University Institute of Social Sciences, Afyon.
  • Yıldırım, B., & Türk, C. (2018). Sınıf öğretmeni adaylarının STEM eğitimine yönelik görüşleri: uygulamalı bir çalışma[Pre-Service Primary School Teachers’ Views about STEM Education: An Applied Study]. Trakya Journal of Education, 8(2), 195-213.
  • Yıldırım, B. (2016). 7. Sınıf fen bilimleri dersine entegre edilmiş fen, teknoloji, mühendislik, matematik (STEM) uygulamaları ve tam öğrenmenin etkilerinin incelenmesi[An examination of the effects of science, technology, engineering, mathematics (STEM) applications and mastery learning integrated into the 7th grade science course]. Doctoral Thesis, Gazi University, Institute of Educational Sciences Ankara.
There are 61 citations in total.

Details

Primary Language English
Subjects Special Education and Disabled Education
Journal Section Articles
Authors

Elçin Ayaz

Rabia Sarıkaya 0000-0001-9247-8973

Project Number 04 / 2018-03
Publication Date October 1, 2021
Published in Issue Year 2021 Volume: 7 Issue: 4

Cite

APA Ayaz, E., & Sarıkaya, R. (2021). The Effect of Engineering Design Based Science Teaching on Decision Making, Scientific Creativity and Design Skills of Classroom Teacher Candidates. Journal of Education in Science Environment and Health, 7(4), 309-328. https://doi.org/10.21891/jeseh.961060