Research Article
BibTex RIS Cite

Heat Integration in Synthetic Fuel Production Plants

Year 2024, Volume: 5 Issue: 1, 16 - 24, 01.07.2024

Abstract

This study addresses the integration of thermal energy to enhance the quality of energy management in methanol production systems. In this study, the minimum number of heat exchangers (HXs) required for optimum heat transfer was obtained by the pinch analysis method, taking into account temperature ranges and compression temperatures. This approach minimizes energy consumption and maximizes energy recovery, as it allows the waste heat generated within the system to be used in others that need heat. Thus, in order to maintain the system, there is a significant decrease in the amount of heat input and heat loss to the outside. In addition, this study evaluated the carbon emissions from coal at the end of heat integration (HI) and the ability of the system to reduce CO2 emissions. The results show that the heat exchanger network (HEN) optimized by the pinch analysis method significantly reduces the utility consumption and increases the energy recovery in methanol production. Thermal integration leads to a significant increase in emissions reductions, making the process more environmentally friendly. In conclusion, this research highlights the importance of thermal energy integration in methanol production and industrial processes, offering energy efficiency improvements and environmental benefits. As a result of the study, the emission reduction, which was 4513 tons/day with the same number of heat exchangers, increased to 4890 tons/day at the end of heat integration.

References

  • Besevli, B., Kayabasi, E., Akroot, A., Talal, W., Alfaris, A., Assaf, Y. H., Nawaf, M. Y., Bdaiwi, M., & Khudhur, J. (2024). applied sciences Technoeconomic Analysis of Oxygen-Supported Combined Systems for Recovering Waste Heat in an Iron-Steel Facility.
  • Boldyryev, S. (2018). Heat Integration in a Cement Production (H. E.-D. M. Saleh & R. O. A. Rahman (eds.); p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.75820
  • Chen, A. Y., & Lan, E. I. (2020). Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnology Journal, 15(6). https://doi.org/10.1002/biot.201900356
  • Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol Production and Applications: An Overview. In Methanol (pp. 3–28). Elsevier. https://doi.org/10.1016/B978-0-444-63903-5.00001-7
  • IPCC. (1996). Vol. 3: Chapter 1 Energy. In Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual (Issue 1996, pp. 1–40).
  • Kim, J., Henao, C. A., Johnson, T. A., Dedrick, D. E., Miller, J. E., Stechel, E. B., & Maravelias, C. T. (2011). Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy & Environmental Science, 4(9), 3122. https://doi.org/10.1039/c1ee01311d
  • Kiss, A. A., Pragt, J. J., Vos, H. J., Bargeman, G., & de Groot, M. T. (2016). Novel efficient process for methanol synthesis by CO 2 hydrogenation. Chemical Engineering Journal, 284, 260–269. https://doi.org/10.1016/j.cej.2015.08.101
  • Liang, Z., Liang, Y., Luo, X., Wang, H., Wu, W., Chen, J., & Chen, Y. (2023). Integration and optimization of methanol-reforming proton exchange membrane fuel cell system for distributed generation with combined cooling, heating and power. Journal of Cleaner Production, 411, 137342. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137342
  • MACHIDA, S., AKIYAMA, T., & YAGI, J.-I. (1998). Exergy Analysis of Methanol Production System. KAGAKU KOGAKU RONBUNSHU, 24(3), 462–470. https://doi.org/10.1252/kakoronbunshu.24.462
  • Malekli, M., Aslani, A., Zolfaghari, Z., & Zahedi, R. (2023). CO2 capture and sequestration from a mixture of direct air and industrial exhaust gases using MDEA/PZ: Optimal design by process integration with organic rankine cycle. Energy Reports, 9, 4701–4712. https://doi.org/10.1016/j.egyr.2023.03.115
  • Mancusi, E., Bareschino, P., Brachi, P., Coppola, A., Ruoppolo, G., Urciuolo, M., & Pepe, F. (2021). Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems. Renewable Energy, 179, 29–36. https://doi.org/10.1016/j.renene.2021.06.114
  • Masso, A. H., & Rudd, D. F. (1969). The synthesis of system designs. II. Heuristic structuring. AIChE Journal, 15(1), 10–17. https://doi.org/10.1002/aic.690150108 Monnerie, N., Gan, P. G., Roeb, M., & Sattler, C. (2020). Methanol production using hydrogen from concentrated solar energy. International Journal of Hydrogen Energy, 45(49), 26117–26125. https://doi.org/10.1016/j.ijhydene.2019.12.200
  • Ozcan, H., & Kayabasi, E. (2021). Thermodynamic and economic analysis of a synthetic fuel production plant via CO2 hydrogenation using waste heat from an iron-steel facility. Energy Conversion and Management, 236(February), 114074. https://doi.org/10.1016/j.enconman.2021.114074
  • Paiva, A. P. R., Santos, R. O., Maia, M. P., & Prata, D. M. (2023). Improvement of the monochlorobenzene separation process through heat integration: A sustainability-based assessment. Chemical Industry and Chemical Engineering Quarterly, 29(1), 31–42.
  • Roetzel, W., Luo, X., & Chen, D. (2020). Chapter 6 - Optimal design of heat exchanger networks (W. Roetzel, X. Luo, & D. B. T.-D. and O. of H. E. and their N. Chen (eds.); pp. 231–317). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817894-2.00006-6
  • Sivadinarayana, C., Miasser, A.-G., Atul, P., Ravichander, N., Saud, A.-H., & Arwa, R. (2020). Methanol production process.
  • Turton, R., Bailie, R. C., Whiting, W. B., & Shaeiwitz, J. A. (2008). Analysis, synthesis and design of chemical processes (R. Turton (ed.); 5th Editio). Pearson Education.
  • Turton, R., Shaeiwitz, K. A., & Bhattacharyya, D. (2018). Analysis, Synthesis, and Design of Chemical Processes (W. B. Whiting (ed.); 5th Editio). Pearson Education.
  • Vesterinen, E. (2018). Methanol Production via CO2 Hydrogenation [Aalto University School of Engineering]. https://aaltodoc.aalto.fi/bitstream/handle/123456789/35555/master_Vesterinen_Eero_2018.pdf?sequence=1&isAllowed=y
  • Zhai, J., Chen, X., Sun, X., & Xie, H. (2023). Economically and thermodynamically efficient pressure-swing distillation with heat integration and heat pump techniques. Applied Thermal Engineering, 218, 119389. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2022.119389

Sentetik Yakıt Üretim Tesislerinde Isı Entegrasyonu

Year 2024, Volume: 5 Issue: 1, 16 - 24, 01.07.2024

Abstract

Bu çalışma, metanol üretim sistemlerinde enerji yönetiminin kalitesini artırmak için termal enerjinin entegrasyonunu ele almaktadır. Bu çalışmada, optimum ısı transferi için gerekli olan minimum ısı değiştirici (HX) sayısı, sıcaklık aralıkları ve sıkıştırma sıcaklıkları dikkate alınarak, çimdik analizi yöntemi ile elde edilmiştir. Bu yaklaşım, sistem içinde üretilen atık ısının ısıya ihtiyaç duyan diğer sistemlerde kullanılmasına olanak tanıdığı için enerji tüketimini en aza indirir ve enerji geri kazanımını en üst düzeye çıkarır. Böylece sistemin devamlılığını sağlamak için dışarıya ısı girişi ve ısı kaybı miktarında ciddi bir azalma olur. Ayrıca bu çalışma, ısı entegrasyonu (HI) sonunda kömürden kaynaklanan karbon emisyonlarını ve sistemin CO2 emisyonlarını azaltma yeteneğini değerlendirmektedir. Sonuçlar, pinch analiz yöntemiyle optimize edilen ısı değiştiricisi ağının (HEN), şebeke tüketimini önemli ölçüde azalttığını ve metanol üretiminde enerji geri kazanımını arttırdığını göstermektedir. Isıl entegrasyon, emisyon azaltımlarında önemli bir artışa yol açarak süreci daha çevre dostu hale getirmiştir. Sonuç olarak bu araştırma, enerji verimliliği iyileştirmeleri ve çevresel faydalar sunan metanol üretimi ve endüstriyel süreçlerde termal enerji entegrasyonunun önemini vurgulamaktadır. Çalışma sonucunda aynı sayıda ısı değiştirici ile 4513 ton/gün olan emisyon azaltımı, ısı entegrasyonu sonunda 4890 ton/gün'e çıkmıştır.

References

  • Besevli, B., Kayabasi, E., Akroot, A., Talal, W., Alfaris, A., Assaf, Y. H., Nawaf, M. Y., Bdaiwi, M., & Khudhur, J. (2024). applied sciences Technoeconomic Analysis of Oxygen-Supported Combined Systems for Recovering Waste Heat in an Iron-Steel Facility.
  • Boldyryev, S. (2018). Heat Integration in a Cement Production (H. E.-D. M. Saleh & R. O. A. Rahman (eds.); p. Ch. 7). IntechOpen. https://doi.org/10.5772/intechopen.75820
  • Chen, A. Y., & Lan, E. I. (2020). Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnology Journal, 15(6). https://doi.org/10.1002/biot.201900356
  • Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M., & Basile, A. (2018). Methanol Production and Applications: An Overview. In Methanol (pp. 3–28). Elsevier. https://doi.org/10.1016/B978-0-444-63903-5.00001-7
  • IPCC. (1996). Vol. 3: Chapter 1 Energy. In Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual (Issue 1996, pp. 1–40).
  • Kim, J., Henao, C. A., Johnson, T. A., Dedrick, D. E., Miller, J. E., Stechel, E. B., & Maravelias, C. T. (2011). Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. Energy & Environmental Science, 4(9), 3122. https://doi.org/10.1039/c1ee01311d
  • Kiss, A. A., Pragt, J. J., Vos, H. J., Bargeman, G., & de Groot, M. T. (2016). Novel efficient process for methanol synthesis by CO 2 hydrogenation. Chemical Engineering Journal, 284, 260–269. https://doi.org/10.1016/j.cej.2015.08.101
  • Liang, Z., Liang, Y., Luo, X., Wang, H., Wu, W., Chen, J., & Chen, Y. (2023). Integration and optimization of methanol-reforming proton exchange membrane fuel cell system for distributed generation with combined cooling, heating and power. Journal of Cleaner Production, 411, 137342. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137342
  • MACHIDA, S., AKIYAMA, T., & YAGI, J.-I. (1998). Exergy Analysis of Methanol Production System. KAGAKU KOGAKU RONBUNSHU, 24(3), 462–470. https://doi.org/10.1252/kakoronbunshu.24.462
  • Malekli, M., Aslani, A., Zolfaghari, Z., & Zahedi, R. (2023). CO2 capture and sequestration from a mixture of direct air and industrial exhaust gases using MDEA/PZ: Optimal design by process integration with organic rankine cycle. Energy Reports, 9, 4701–4712. https://doi.org/10.1016/j.egyr.2023.03.115
  • Mancusi, E., Bareschino, P., Brachi, P., Coppola, A., Ruoppolo, G., Urciuolo, M., & Pepe, F. (2021). Feasibility of an integrated biomass-based CLC combustion and a renewable-energy-based methanol production systems. Renewable Energy, 179, 29–36. https://doi.org/10.1016/j.renene.2021.06.114
  • Masso, A. H., & Rudd, D. F. (1969). The synthesis of system designs. II. Heuristic structuring. AIChE Journal, 15(1), 10–17. https://doi.org/10.1002/aic.690150108 Monnerie, N., Gan, P. G., Roeb, M., & Sattler, C. (2020). Methanol production using hydrogen from concentrated solar energy. International Journal of Hydrogen Energy, 45(49), 26117–26125. https://doi.org/10.1016/j.ijhydene.2019.12.200
  • Ozcan, H., & Kayabasi, E. (2021). Thermodynamic and economic analysis of a synthetic fuel production plant via CO2 hydrogenation using waste heat from an iron-steel facility. Energy Conversion and Management, 236(February), 114074. https://doi.org/10.1016/j.enconman.2021.114074
  • Paiva, A. P. R., Santos, R. O., Maia, M. P., & Prata, D. M. (2023). Improvement of the monochlorobenzene separation process through heat integration: A sustainability-based assessment. Chemical Industry and Chemical Engineering Quarterly, 29(1), 31–42.
  • Roetzel, W., Luo, X., & Chen, D. (2020). Chapter 6 - Optimal design of heat exchanger networks (W. Roetzel, X. Luo, & D. B. T.-D. and O. of H. E. and their N. Chen (eds.); pp. 231–317). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-817894-2.00006-6
  • Sivadinarayana, C., Miasser, A.-G., Atul, P., Ravichander, N., Saud, A.-H., & Arwa, R. (2020). Methanol production process.
  • Turton, R., Bailie, R. C., Whiting, W. B., & Shaeiwitz, J. A. (2008). Analysis, synthesis and design of chemical processes (R. Turton (ed.); 5th Editio). Pearson Education.
  • Turton, R., Shaeiwitz, K. A., & Bhattacharyya, D. (2018). Analysis, Synthesis, and Design of Chemical Processes (W. B. Whiting (ed.); 5th Editio). Pearson Education.
  • Vesterinen, E. (2018). Methanol Production via CO2 Hydrogenation [Aalto University School of Engineering]. https://aaltodoc.aalto.fi/bitstream/handle/123456789/35555/master_Vesterinen_Eero_2018.pdf?sequence=1&isAllowed=y
  • Zhai, J., Chen, X., Sun, X., & Xie, H. (2023). Economically and thermodynamically efficient pressure-swing distillation with heat integration and heat pump techniques. Applied Thermal Engineering, 218, 119389. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2022.119389
There are 20 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Araştırma makalesi
Authors

Mohammed Abdulmunem Mohammed Alsunousı 0000-0003-4124-9235

Early Pub Date June 27, 2024
Publication Date July 1, 2024
Submission Date March 22, 2024
Acceptance Date May 2, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Alsunousı, M. A. M. (2024). Heat Integration in Synthetic Fuel Production Plants. Journal of Steel Research and Development, 5(1), 16-24.
AMA Alsunousı MAM. Heat Integration in Synthetic Fuel Production Plants. JESRED. July 2024;5(1):16-24.
Chicago Alsunousı, Mohammed Abdulmunem Mohammed. “Heat Integration in Synthetic Fuel Production Plants”. Journal of Steel Research and Development 5, no. 1 (July 2024): 16-24.
EndNote Alsunousı MAM (July 1, 2024) Heat Integration in Synthetic Fuel Production Plants. Journal of Steel Research and Development 5 1 16–24.
IEEE M. A. M. Alsunousı, “Heat Integration in Synthetic Fuel Production Plants”, JESRED, vol. 5, no. 1, pp. 16–24, 2024.
ISNAD Alsunousı, Mohammed Abdulmunem Mohammed. “Heat Integration in Synthetic Fuel Production Plants”. Journal of Steel Research and Development 5/1 (July 2024), 16-24.
JAMA Alsunousı MAM. Heat Integration in Synthetic Fuel Production Plants. JESRED. 2024;5:16–24.
MLA Alsunousı, Mohammed Abdulmunem Mohammed. “Heat Integration in Synthetic Fuel Production Plants”. Journal of Steel Research and Development, vol. 5, no. 1, 2024, pp. 16-24.
Vancouver Alsunousı MAM. Heat Integration in Synthetic Fuel Production Plants. JESRED. 2024;5(1):16-24.