Research Article
PDF Mendeley EndNote BibTex Cite

Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study

Year 2022, Volume 7, Issue 1, 31 - 44, 30.04.2022
https://doi.org/10.30931/jetas.1034671

Abstract

In recent years, severe mucilage formation threatening nearshore marine ecosystems has intensified investigations on possible separation of components forming mucilage flocculation, deactivating bacteria adhesion and decomposing the colloidal structure. Challenges to eliminating mucilage formation in marine ecosystems require long-term measures, however quick reaction with environment-friendly approach is of great importance for the control of mucilage expansion since the impact of mucilage can be significantly hazardous in nearshore marine areas during seasonal change and may spread to more expansive areas when disregarded. In the present study, ultrasonic vibration at 40 kHz frequency generated by sonication showed a time-dependent destructive effect on the colloidal structure of mucilage. Results showed that an ultrasound wave with 40 kHz frequency for 60 minutes of application could be effective for nearly 50% dispersal of mucilage aggregation on sea surface that in terms might be a useful tool for rapid response in an Emergency Action Plans. However, further research is encouraged for understanding how sonication mitigates the aggregation of phytoplankton and bacteria forming the complex matrix of polymeric mucilage structure.

References

  • [1] Mingazzini, M., Colombo, S., Ferrari, G.M., “Application of spectrofluorimetric techniques to the study of marine mucilages in the Adriatic Sea: preliminary results”, Sci Total Environ 165 (1995) : 133-144. https://doi.org/10.1016/0048-9697(95)04547-E
  • [2] MacKenzie, L., Sims, I.M., Beuzenberg, V., Gillespie, P., “Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasmanian Bay, New Zealand”, Harmful Algae 1 (2002) : 69-83. https://doi.org/10.1016/S1568-9883(02)00006-9
  • [3] Pompei, M., Mazziotti, C., Guerrini, F., Cangini, M., Pigozzi, S., Benzi, M., Palamidesi, S., Boni, L., Pistocchi, R., “Correlation between the presence of Gonyaulax fragilis (Dinophyceae) and mucilage phenomena of the Emilia-Romagna coast (northern Adriatic Sea)”, Harmful Algae 2(4) (2003) : 301-316. https://doi.org/10.1016/S1568-9883(03)00059-3
  • [4] Metaxatos, A., Panagiotopoulos, C., Ignatiades, L., “Monosaccharide and aminoacid composition of mucilage material produced from a mixture of four phytoplanktonic taxa”, J Exp Mar Biol Ecol 294 (2003) : 203-217. https://doi.org/10.1016/S0022-0981(03)00269-7
  • [5] Nikolaidis, G., Aligizaki, K., Koukaras, K., Moschandreou, K., “Mucilage phenomena in North Aegean Sea, Greece: another harmful effect of dinoflagellates?”, 12th International Conference on Harmful Algae, Copenhagen, Denmark, 4-8 September 2006.
  • [6] Degobbis, D., Fonda, Umani, S., Franco, P., Malej, A., Precali, R., Smodlaka, N., “Changes in the northern Adriatic ecosystem and hypertrophic appearance of gelatinous aggregates”, Sci Total Environ 165 (1995) : 43–58. https://doi.org/10.1016/0048-9697(95)04542-9
  • [7] Balkis, N., “Seasonal variations in the phytoplankton and nutrient dynamics in the neritic water of Büyükçekmece Bay, Sea of Marmara”, J Plankton Res 25 (2003) : 703-717. https://doi.org/10.1093/plankt/25.7.703
  • [8] Najdek, M., Blazina, M., Djakovac, T., Kraus, R., “The role of the diatom Cylindrotheca closterium in a mucilage event in the northern Adriatic Sea: coupling with high salinity water intrusions”, J Plankton Res 27 (2005) : 851-862. https://doi.org/10.1093/plankt/fbi057
  • [9] Tüfekçi, V., Balkıs, N., Polat Beken, Ç., Ediger, D., Mantıkçı, M., “Phytoplankton composition and environmental conditions of a mucilage event in the Sea of Marmara”, Turk J Biol 34 (2010) : 199-210. https://doi.org/10.3906/biy-0812-1
  • [10] Mecozzi, M., Pietroletti, M., Conti, M.E., “The complex mechanisms of marine mucilage formation by spectroscopic investigation of the structural characteristics of natural and synthetic mucilage samples”, Mar Chem 112(1-2) (2008) : 38-52. http://dx.doi.org/10.1016/j.marchem.2008.05.007
  • [11] Simon, M., Grossart, H.P., Schweitzer, B., Ploug, H., “Microbial ecology of organic aggregates in aquatic ecosystems”, Aquat Microb Ecol 28 (2002) : 175–211. https://doi.org/10.3354/ame028175
  • [12] Shanks, A.L., Trent, J.D., “Marine snow: microscale nutrient patches”, Limnol Oceanogr 24 (1979) : 850-854.
  • [13] Aldredge, A.L., Granata, T.C., Gotschalk, C.C., Dickey, T.D., “The physical strength of marine snow and its implications for particle disaggregation in the ocean”, Limnol Oceanogr 35(7) (1990) : 1415-1428.
  • [14] Tansel, B., “Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: A comparative review”, J Environ Manage 205 (2018) : 231-243. https://doi.org/10.1016/j.jenvman.2017.09.082
  • [15] Precali, R., Giani, M., Marini, M., Grilli, F., Ferrari, C.R., Pecar, O., Paschini, E., “Mucilaginous aggregates in the Northern Adriatic in the period 1999–2002: typology and distribution”, Sci Total Environ 353 (2005) : 10–23. https://doi.org/10.1016/j.scitotenv.2005.09.066
  • [16] Muller-Niklas, G., Schuster, S., Kaltenbock, E., Herndl, G.J., “Organic content and bacterial metabolism in amorphous aggregations of the Northern Adriatic Sea”, Limnol Oceanogr 39 (1994) : 58–68. https://doi.org/10.4319/lo.1994.39.1.0058
  • [17] Obernosterer, I., Herndl, G.J., “Phytoplankton extracellular release and bacterial growth: Dependence on the inorganic N:P ratio”, Mar Ecol Prog Ser 116(1-3) (1995) : 247–257. https://doi.org/10.3354/meps116247
  • [18] Herndl, G.J., Peduzzi, P., “Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea: I general considerations”, PSZNI Mar Ecol 9 (1988) : 79–90.
  • [19] Herndl, G.J., “Marine snow in northern Adriatic Sea: possible causes and consequences for a shallow ecosystem”, Mar Microb Food Webs 6 (1992) : 149–172.
  • [20] Fogg, G.E., “Some speculations on the nature of the pelagic mucilage community of the northern Adriatic Sea”, Sci Total Environ 165 (1995) : 59–63. https://doi.org/10.1016/0048-9697(95)04543-A
  • [21] Donskoy, D.M., “The use of acoustic, vibrational, and hydrodynamic techniques to control zebra mussel infestation. Technical Report, New Jersey Marine Sciences Consortium. Technical Report SIT-DL-96-9-2736. Davidson Laboratory Project 5437/62 (1996) New Jersey. https://rucore.libraries.rutgers.edu/rutgers-lib/46935/PDF/1/play/ (accessed 21 Setember 2021).
  • [22] Tiller, G.W., Gaucher, T.A., Menezes, J.K., Dolat, S.W., “Zebra mussel control using acoustic energy”, Proc Am Power Conf 54(1) (1992) Conference: 54. Annual American power conference, Chicago, IL (United States), 13-15 Apr 1992; Journal ID: ISSN 0097-2126. https://www.osti.gov/biblio/7117379-zebra-mussel-control-using-acoustic-energy. (accessed 13 September 2021).
  • [23] Dai, C., Xiong, F., He, R., Zhang, W., Ma, H., “Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae” Ultrason Sonochem 36 (2017) : 191–197. https://doi.org/10.1016/j.ultsonch.2016.11.035
  • [24] Pulkki, V., McCormack, L., Gonzalez, R., “Superhuman spatial hearing technology for ultrasonic frequencies”, Sci Rep 11 (2021) : 11608. https://doi.org/10.1038/s41598-021-90829-9
  • [25] Elpiner, I.E., Feigina, Z.S., “Ultrasound waves in the fight against hydrobionts”, Vodosnabzheniye i Sanitarnaya Tech 6 (1957) : 14-16.
  • [26] Latour, M., Murphy, P., “Application of PVF2 transducers as piezoelectric vibrators for marine fouling prevention”, Ferroelectrics 32(1) (1981) : 33–37. https://doi.org/10.1080/00150198108238670.
  • [27] Branscomb, E.S., Rittschof, D., “An investigation of low frequency sound waves as a means of inhibiting barnacle settlement”, J Exp Mar Biol Ecol 79(2) (1984) : 149–154. https://doi.org/10.1016/0022-0981(84)90215-6
  • [28] Fischer, E., Castelli, V., Rodgers, S., Bleile, H., “Technology for Control of Marine Biofouling - A Review”, in: Costlaw, J.D., Tipper, R.C. (Eds.), Marine Biodeterioration: An Interdisciplinary Study. Naval Institute Press, Annapolis MD, (1984) : 261–300
  • [29] Choi, C., Scardino, A., Dylejko, P., Fletcher, L., Juniper, R., “The effect of vibration frequency and amplitude on biofouling deterrence”, Biofouling 29(2) (2013) : 195–202. https://doi.org/10.1080/08927014.2012.760125
  • [30] Huang, G., Tang, Y., Sun, L., Xing, H., Ma, H., He, R., “Ultrasonic irradiation of low intensity with a mode of sweeping frequency enhances the membrane permeability and cell growth rate of Candida tropicalis”, Ultrason Sonochem 37 (2017) : 518–528. http://dx.doi.org/10.1016/j.ultsonch.2017.02.010
  • [31] Pitt, W.G., Ross, S.A., “Ultrasound increases the rate of bacterial cell growth”, Biotechnol Prog 19(3) (2003) : 1038–1044. https://doi.org/10.1021/bp0340685
  • [32] Gao, S., Lewis, G.D., Ashokkumar, M., Hemar, Y., “Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism”, Ultrason Sonochem 21 (2014a) : 454–460. http://dx.doi.org/10.1016/j.ultsonch.2013.06.007
  • [33] Kapturowska, A.U., Stolarzewicz, I.A., Krzyczkowska, J., Białecka-Florjanczyk, E., “Studies on the lipolytic activity of sonicated enzymes from Yarrowia lipolytica” Ultrason Sonochem 19 (2012) : 186–191. http://dx.doi.org/10.1016/j.ultsonch.2011.06.015
  • [34] McDonald, J., Wilkens, S., Stanley, J., Jeffs, A., “Vessel generator noise as a settlement cue for marine biofouling species”, Biofouling 30(6) (2014) : 741–749. https://doi.org/10.1080/08927014.2014.919630
  • [35] Stanley, J.A., Wilkens, S.L., Jeffs, A.G., “Fouling in your own nest: vessel noise increases biofouling”, Biofouling 30(7) (2014) : 837–844. https://doi.org/10.1080/08927014.2014.938062
  • [36] Sheherbakov, P.S., Grigoryan, F.Y., Pogrebnyak, N.V., “Distribution of high frequency vibration in hulls of Krasnograd-class ships equipped with ultrasonic antifouling protection systems. Transaction”, Technical Operations of the Maritime Fleet. Thermochemical Studies. Control of Corrosion and Fouling (1974) : AD 778380
  • [37] Mazue, G., Viennet, R., Hihn, J., Carpentier, L., Devidal, P., Albaina, I., “Largescale ultrasonic cleaning system: design of a multi-transducer device for boat cleaning (20 kHz)”, Ultrason Sonochem 18(4) (2011) : 895–900. https://doi.org/10.1016/j.ultsonch.2010.11.021
  • [38] Guo, S., Lee, H., Teo, S., Khoo, B., “Inhibition of barnacle cyprid settlement using low frequency and intensity ultrasound”, Biofouling 28(2) (2012) : 131–141. https://doi.org/10.1080/08927014.2012.658511
  • [39] Sonalysts, Inc. & Aquatic Sciences, Inc. Zebra Mussel deterrence using acoustic energy. Empire State Electric Energy Research Corporation ESEERCO, Research report (1991): EP 90-38.
  • [40] Sonalysts, Inc. & Aquatic Sciences, Inc, Evaluation of ultrasound for Zebra Mussel mitigation. ESEERCO, Research report (1992): EP 91-17.
  • [41] Boelman, S.F., Neilson, F.M., Dardeau, E.A., Cross, Jr.T., “Zebra Mussel (Dreissena polymorpha) Control Handbook for Facility Operators, first ed. Zebra Mussel Research Program. Miscellaneous Paper (1997): EL-97-1, U.S. Army Corps of Engineers Washington.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1005.6304&rep=rep1&type=pdf (accessed 18 September 2021).
  • [42] Kowalewski, J.J., Patrick, P.H., Christie, A.E., “Effect of acoustic energy on the zebra mussel (Dreissena polymorpha)”, in: Nalepa, T.F., Schloesser, D.W. (Eds.), Zebra mussels: Biology, impacts, and control. Lewis Publishers, Boca Raton, FL (1993) : 657-666.
  • [43] Ciccolini, L., Taillandier, P., Wilhem, A.M., Delmas, H., Strehaiano, P., “Low frequency thermo-ultrasonication of Saccharomyces cerevisiae suspensions: effect of temperature and of ultrasonic power”, Chem Eng J 65 (1997) : 145–149. https://doi.org/10.1016/S1385-8947(96)03172-5
  • [44] Guerrero, S., López-Malo, A., Alzamora, S.M., “Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude”, Innov Food Sci Emerg Technol 2(1) (2001) : 31–39.
  • [45] Gandhi, H.P., Ray, R.M., Patel, R.M., “Exopolymer production by Bacillus species”, Carbohydr Polym 34 (1997) 323-327. https://doi.org/10.1016/S0144-8617(97)00132-X
  • [46] Underwood, G.J.C., Fietz, S., Papadimitriou, S., Thomas, D.N., Dieckmann, G.S., “Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic Sea ice”, Mar Ecol Prog Ser 404 (2010) : 1-19. https://doi.org/10.3354/meps08557
  • [47] Kitamura, H., Takahashi, K., Kanamaru, D., “Inhibitory effect of ultrasonic waves on the larval settlement of the barnacle Balanus amphitrite in the laboratory”, Mar Fouling 12(1) (1995) : 9–13. http://dx.doi.org/10.4282/sosj1979.12.9
  • [48] Guo, S., Lee, H.P., Khoo, B.C., “Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement”, J Exp Mar Biol Ecol 409(1) (2011a) : 253–258. https://doi.org/10.1016/j. jembe.2011.09.006
  • [49] Guo, S., Lee, H., Chaw, K., Miklas, J., Teo, S., Dickinson, G., Birch, W., Khoo, B., “Effect of ultrasound on cyprids and juvenile barnacles”, Biofouling 27(2) (2011b) : 185–192. https://doi.org/10.1080/089 27014.2010.551535
  • [50] Gavand, M., McClintock, J., Amsler, C., Peters, R., Angus, R., “Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water”, Mar Pollut Bull 54(11) (2007) : 1777–1788. https://doi.org/10.1016/j.marpolbul.2007.07.012
  • [51] Suzuki, H., Konno, K., “Basic studies on the antifouling by ultrasonic waves for ship’s bottom fouling organisms”, J Tokyo Univ Fish 56 (1970) : 31–48.
  • [52] Seth, N., Chakravarty, P., Khandeparker, L., Anil, A., Pandit, A., “Quantification of the energy required for the destruction of Balanus amphitrite larva by ultrasonic treatment”, J Mar Biol Assoc UK 90(7) (2010) : 1475–1482. https://doi.org/10.1017/S0025315409991548
  • [53] Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N., Burkholder, J.M., “Sonication of bacteria phytoplankton and zooplankton: application to treatment of ballast water”, Mar Poll Bull 56(6) (2008) : 1201–1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
  • [54] Leppard, G.G., “The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems”, Sci Total Environ 165 (1995) : 103–131. https://doi.org/10.1016/0048-9697(95)04546-d
  • [55] Ewe, J.A., Abdullah, W.N.W., Bhat, R., Karim, A.A., Liong, M.T., “Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment. Ultrason Sonochem 19 (2012) : 160-173. https://doi.org/10.1016/j.ultsonch.2011.06.013
  • [56] Guimarães, J.T., Silva, E.K., Alvarenga, V.O., Costa, A.L.R., Cunha, R.L., Santana, A.S., Freitas, M.Q., Meireles, M.A.A, Cruz, A.G., “Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels”, Ultrason Sonochem 44 (2018) : 251–260. https://doi.org/10.1016/j.ultsonch.2018.02.012
  • [57] Koua, X., Lia, R., Houa, L., Zhanga, L., Wang, S., “Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms”, Int J Food Microbiol 269 (2018) 89–97. https://doi.org/10.1016/j.ijfoodmicro.2018.01.025
  • [58] Wu, X., Joyce, E.M., Mason, T.J., “The effects of ultrasound on cyanobacteria. Harmful Algae 10 (2011) 738-743. https://doi.org/10.1016/j.hal.2011.06.005
  • [59] Zhu, H.X., Cai, X.Z., Shi, A.L., Hu, B., Yan, S.G., “Microbubble-Mediated Ultrasound Enhances the Lethal Effect of Gentamicin on Planktonic Escherichia coli”, BioMed Res Int 7 (2014). http://dx.doi.org/10.1155/2014/142168
  • [60] Liao, X., Li, J., Suo, Y., Chen, S., Ye, Z., Liu, D., Ding, T., “Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus”, Food Sci Hum Well 7 (2018) : 102–109. https://doi.org/10.1016/j.fshw.2018.01.002
  • [61] Branda, S.S., Vik, A., Friedman, L., Kolter, R., “Biofilm: the matrix revisited”, Trends Microbiol 13 (2005) : 20-26. https://doi.org/10.1016/j.tim.2004.11.006
  • [62] Willis, L.M., Whitfield, C., “Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways”, Carbohydr Res 378 (2013) : 35-44. https://doi.org/10.1016/j.carres.2013.05.007
  • [63] Di Donato, P., Poli, A., Taurisano, V., Abbamondi, G.R., Nicolaus, B., Tommonaro, G., “Recent advances in the study of marine microbial biofilm: from the involvement of quorum sensing in its production up to biotechnological application of the polysaccharide fractions”, J Marine Sci Eng 4 (2016) : 34. https://doi.org/10.3390/jmse4020034
  • [64] Lee, J.W., Yeoman, S.W.G., Allen, A.L., Deng, F., Gross, R.A., Kaplan, D.L., “Biosynthesis of novel exopolymers by Aureobasidium pullulans”, Appl Environ Microbiol 65(12) (1999) : 5262-5271. https://doi.org/10.1128/AEM.65.12.5265-5271.1999
  • [65] Delauney, L., Compére, C., Lehaitre, M., “Biofouling protection for marine environmental sensors”, Ocean Sci Discuss 6(3) (2009) : 2993–3018. www.ocean-sci-discuss.net/6/2993/2009/
  • [66] Yamamoto, K., King, P.M., Wu, X., Mason, T.J., Joyce, E.M., “Effect of ultrasonic frequency and power on the disruption of algal cells”, Ultrason Sonochem 24 (2015) : 165–171. https://doi.org/10.1016/j.ultsonch.2014.11.002
  • [67] Gao, S., Lewis, G.D., Ashokkumar, M., Hemar, Y., “Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria”, Ultrason Sonochem 21 (2014b) : 446–453. http://dx.doi.org/10.1016/j.ultsonch.2013.06.006
  • [68] Thacker, J., “An approach to the mechanism of killing of cells in suspension by ultrasound”, Biochim Biophys Acta Gen Subj 304(2) (1973) : 240–248. https://doi.org/10.1016/0304-4165(73)90241-9
  • [69] Nesaratnam, S.T., Wase, D.A.J., Blakebrough, N., “The susceptibility to ultrasonic disintegration of Klebsiella pneumoniae NCTC 418”, Eur J Appl Microbiol Biotechnol 15(1) (1982) : 56–58. https://doi.org/10.1007/BF01875402
  • [70] Wietzikoski Lovato, E.C., Velasquez, P.A.G., Oliveira, C.S.O., Baruffi, C., Anghinoni, T., Machado, R.C., Lívero, F.A.R., Wietzikoski Sato, S., Martins, L.A., “High frequency equipment promotes antibacterial effects dependent on intensity and exposure time”, Clin Cosmet Investig Dermatol 11 (2018) : 131-135. https://doi.org/10.2147/CCID.S156282

Year 2022, Volume 7, Issue 1, 31 - 44, 30.04.2022
https://doi.org/10.30931/jetas.1034671

Abstract

References

  • [1] Mingazzini, M., Colombo, S., Ferrari, G.M., “Application of spectrofluorimetric techniques to the study of marine mucilages in the Adriatic Sea: preliminary results”, Sci Total Environ 165 (1995) : 133-144. https://doi.org/10.1016/0048-9697(95)04547-E
  • [2] MacKenzie, L., Sims, I.M., Beuzenberg, V., Gillespie, P., “Mass accumulation of mucilage caused by dinoflagellate polysaccharide exudates in Tasmanian Bay, New Zealand”, Harmful Algae 1 (2002) : 69-83. https://doi.org/10.1016/S1568-9883(02)00006-9
  • [3] Pompei, M., Mazziotti, C., Guerrini, F., Cangini, M., Pigozzi, S., Benzi, M., Palamidesi, S., Boni, L., Pistocchi, R., “Correlation between the presence of Gonyaulax fragilis (Dinophyceae) and mucilage phenomena of the Emilia-Romagna coast (northern Adriatic Sea)”, Harmful Algae 2(4) (2003) : 301-316. https://doi.org/10.1016/S1568-9883(03)00059-3
  • [4] Metaxatos, A., Panagiotopoulos, C., Ignatiades, L., “Monosaccharide and aminoacid composition of mucilage material produced from a mixture of four phytoplanktonic taxa”, J Exp Mar Biol Ecol 294 (2003) : 203-217. https://doi.org/10.1016/S0022-0981(03)00269-7
  • [5] Nikolaidis, G., Aligizaki, K., Koukaras, K., Moschandreou, K., “Mucilage phenomena in North Aegean Sea, Greece: another harmful effect of dinoflagellates?”, 12th International Conference on Harmful Algae, Copenhagen, Denmark, 4-8 September 2006.
  • [6] Degobbis, D., Fonda, Umani, S., Franco, P., Malej, A., Precali, R., Smodlaka, N., “Changes in the northern Adriatic ecosystem and hypertrophic appearance of gelatinous aggregates”, Sci Total Environ 165 (1995) : 43–58. https://doi.org/10.1016/0048-9697(95)04542-9
  • [7] Balkis, N., “Seasonal variations in the phytoplankton and nutrient dynamics in the neritic water of Büyükçekmece Bay, Sea of Marmara”, J Plankton Res 25 (2003) : 703-717. https://doi.org/10.1093/plankt/25.7.703
  • [8] Najdek, M., Blazina, M., Djakovac, T., Kraus, R., “The role of the diatom Cylindrotheca closterium in a mucilage event in the northern Adriatic Sea: coupling with high salinity water intrusions”, J Plankton Res 27 (2005) : 851-862. https://doi.org/10.1093/plankt/fbi057
  • [9] Tüfekçi, V., Balkıs, N., Polat Beken, Ç., Ediger, D., Mantıkçı, M., “Phytoplankton composition and environmental conditions of a mucilage event in the Sea of Marmara”, Turk J Biol 34 (2010) : 199-210. https://doi.org/10.3906/biy-0812-1
  • [10] Mecozzi, M., Pietroletti, M., Conti, M.E., “The complex mechanisms of marine mucilage formation by spectroscopic investigation of the structural characteristics of natural and synthetic mucilage samples”, Mar Chem 112(1-2) (2008) : 38-52. http://dx.doi.org/10.1016/j.marchem.2008.05.007
  • [11] Simon, M., Grossart, H.P., Schweitzer, B., Ploug, H., “Microbial ecology of organic aggregates in aquatic ecosystems”, Aquat Microb Ecol 28 (2002) : 175–211. https://doi.org/10.3354/ame028175
  • [12] Shanks, A.L., Trent, J.D., “Marine snow: microscale nutrient patches”, Limnol Oceanogr 24 (1979) : 850-854.
  • [13] Aldredge, A.L., Granata, T.C., Gotschalk, C.C., Dickey, T.D., “The physical strength of marine snow and its implications for particle disaggregation in the ocean”, Limnol Oceanogr 35(7) (1990) : 1415-1428.
  • [14] Tansel, B., “Morphology, composition and aggregation mechanisms of soft bioflocs in marine snow and activated sludge: A comparative review”, J Environ Manage 205 (2018) : 231-243. https://doi.org/10.1016/j.jenvman.2017.09.082
  • [15] Precali, R., Giani, M., Marini, M., Grilli, F., Ferrari, C.R., Pecar, O., Paschini, E., “Mucilaginous aggregates in the Northern Adriatic in the period 1999–2002: typology and distribution”, Sci Total Environ 353 (2005) : 10–23. https://doi.org/10.1016/j.scitotenv.2005.09.066
  • [16] Muller-Niklas, G., Schuster, S., Kaltenbock, E., Herndl, G.J., “Organic content and bacterial metabolism in amorphous aggregations of the Northern Adriatic Sea”, Limnol Oceanogr 39 (1994) : 58–68. https://doi.org/10.4319/lo.1994.39.1.0058
  • [17] Obernosterer, I., Herndl, G.J., “Phytoplankton extracellular release and bacterial growth: Dependence on the inorganic N:P ratio”, Mar Ecol Prog Ser 116(1-3) (1995) : 247–257. https://doi.org/10.3354/meps116247
  • [18] Herndl, G.J., Peduzzi, P., “Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea: I general considerations”, PSZNI Mar Ecol 9 (1988) : 79–90.
  • [19] Herndl, G.J., “Marine snow in northern Adriatic Sea: possible causes and consequences for a shallow ecosystem”, Mar Microb Food Webs 6 (1992) : 149–172.
  • [20] Fogg, G.E., “Some speculations on the nature of the pelagic mucilage community of the northern Adriatic Sea”, Sci Total Environ 165 (1995) : 59–63. https://doi.org/10.1016/0048-9697(95)04543-A
  • [21] Donskoy, D.M., “The use of acoustic, vibrational, and hydrodynamic techniques to control zebra mussel infestation. Technical Report, New Jersey Marine Sciences Consortium. Technical Report SIT-DL-96-9-2736. Davidson Laboratory Project 5437/62 (1996) New Jersey. https://rucore.libraries.rutgers.edu/rutgers-lib/46935/PDF/1/play/ (accessed 21 Setember 2021).
  • [22] Tiller, G.W., Gaucher, T.A., Menezes, J.K., Dolat, S.W., “Zebra mussel control using acoustic energy”, Proc Am Power Conf 54(1) (1992) Conference: 54. Annual American power conference, Chicago, IL (United States), 13-15 Apr 1992; Journal ID: ISSN 0097-2126. https://www.osti.gov/biblio/7117379-zebra-mussel-control-using-acoustic-energy. (accessed 13 September 2021).
  • [23] Dai, C., Xiong, F., He, R., Zhang, W., Ma, H., “Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae” Ultrason Sonochem 36 (2017) : 191–197. https://doi.org/10.1016/j.ultsonch.2016.11.035
  • [24] Pulkki, V., McCormack, L., Gonzalez, R., “Superhuman spatial hearing technology for ultrasonic frequencies”, Sci Rep 11 (2021) : 11608. https://doi.org/10.1038/s41598-021-90829-9
  • [25] Elpiner, I.E., Feigina, Z.S., “Ultrasound waves in the fight against hydrobionts”, Vodosnabzheniye i Sanitarnaya Tech 6 (1957) : 14-16.
  • [26] Latour, M., Murphy, P., “Application of PVF2 transducers as piezoelectric vibrators for marine fouling prevention”, Ferroelectrics 32(1) (1981) : 33–37. https://doi.org/10.1080/00150198108238670.
  • [27] Branscomb, E.S., Rittschof, D., “An investigation of low frequency sound waves as a means of inhibiting barnacle settlement”, J Exp Mar Biol Ecol 79(2) (1984) : 149–154. https://doi.org/10.1016/0022-0981(84)90215-6
  • [28] Fischer, E., Castelli, V., Rodgers, S., Bleile, H., “Technology for Control of Marine Biofouling - A Review”, in: Costlaw, J.D., Tipper, R.C. (Eds.), Marine Biodeterioration: An Interdisciplinary Study. Naval Institute Press, Annapolis MD, (1984) : 261–300
  • [29] Choi, C., Scardino, A., Dylejko, P., Fletcher, L., Juniper, R., “The effect of vibration frequency and amplitude on biofouling deterrence”, Biofouling 29(2) (2013) : 195–202. https://doi.org/10.1080/08927014.2012.760125
  • [30] Huang, G., Tang, Y., Sun, L., Xing, H., Ma, H., He, R., “Ultrasonic irradiation of low intensity with a mode of sweeping frequency enhances the membrane permeability and cell growth rate of Candida tropicalis”, Ultrason Sonochem 37 (2017) : 518–528. http://dx.doi.org/10.1016/j.ultsonch.2017.02.010
  • [31] Pitt, W.G., Ross, S.A., “Ultrasound increases the rate of bacterial cell growth”, Biotechnol Prog 19(3) (2003) : 1038–1044. https://doi.org/10.1021/bp0340685
  • [32] Gao, S., Lewis, G.D., Ashokkumar, M., Hemar, Y., “Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism”, Ultrason Sonochem 21 (2014a) : 454–460. http://dx.doi.org/10.1016/j.ultsonch.2013.06.007
  • [33] Kapturowska, A.U., Stolarzewicz, I.A., Krzyczkowska, J., Białecka-Florjanczyk, E., “Studies on the lipolytic activity of sonicated enzymes from Yarrowia lipolytica” Ultrason Sonochem 19 (2012) : 186–191. http://dx.doi.org/10.1016/j.ultsonch.2011.06.015
  • [34] McDonald, J., Wilkens, S., Stanley, J., Jeffs, A., “Vessel generator noise as a settlement cue for marine biofouling species”, Biofouling 30(6) (2014) : 741–749. https://doi.org/10.1080/08927014.2014.919630
  • [35] Stanley, J.A., Wilkens, S.L., Jeffs, A.G., “Fouling in your own nest: vessel noise increases biofouling”, Biofouling 30(7) (2014) : 837–844. https://doi.org/10.1080/08927014.2014.938062
  • [36] Sheherbakov, P.S., Grigoryan, F.Y., Pogrebnyak, N.V., “Distribution of high frequency vibration in hulls of Krasnograd-class ships equipped with ultrasonic antifouling protection systems. Transaction”, Technical Operations of the Maritime Fleet. Thermochemical Studies. Control of Corrosion and Fouling (1974) : AD 778380
  • [37] Mazue, G., Viennet, R., Hihn, J., Carpentier, L., Devidal, P., Albaina, I., “Largescale ultrasonic cleaning system: design of a multi-transducer device for boat cleaning (20 kHz)”, Ultrason Sonochem 18(4) (2011) : 895–900. https://doi.org/10.1016/j.ultsonch.2010.11.021
  • [38] Guo, S., Lee, H., Teo, S., Khoo, B., “Inhibition of barnacle cyprid settlement using low frequency and intensity ultrasound”, Biofouling 28(2) (2012) : 131–141. https://doi.org/10.1080/08927014.2012.658511
  • [39] Sonalysts, Inc. & Aquatic Sciences, Inc. Zebra Mussel deterrence using acoustic energy. Empire State Electric Energy Research Corporation ESEERCO, Research report (1991): EP 90-38.
  • [40] Sonalysts, Inc. & Aquatic Sciences, Inc, Evaluation of ultrasound for Zebra Mussel mitigation. ESEERCO, Research report (1992): EP 91-17.
  • [41] Boelman, S.F., Neilson, F.M., Dardeau, E.A., Cross, Jr.T., “Zebra Mussel (Dreissena polymorpha) Control Handbook for Facility Operators, first ed. Zebra Mussel Research Program. Miscellaneous Paper (1997): EL-97-1, U.S. Army Corps of Engineers Washington.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1005.6304&rep=rep1&type=pdf (accessed 18 September 2021).
  • [42] Kowalewski, J.J., Patrick, P.H., Christie, A.E., “Effect of acoustic energy on the zebra mussel (Dreissena polymorpha)”, in: Nalepa, T.F., Schloesser, D.W. (Eds.), Zebra mussels: Biology, impacts, and control. Lewis Publishers, Boca Raton, FL (1993) : 657-666.
  • [43] Ciccolini, L., Taillandier, P., Wilhem, A.M., Delmas, H., Strehaiano, P., “Low frequency thermo-ultrasonication of Saccharomyces cerevisiae suspensions: effect of temperature and of ultrasonic power”, Chem Eng J 65 (1997) : 145–149. https://doi.org/10.1016/S1385-8947(96)03172-5
  • [44] Guerrero, S., López-Malo, A., Alzamora, S.M., “Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude”, Innov Food Sci Emerg Technol 2(1) (2001) : 31–39.
  • [45] Gandhi, H.P., Ray, R.M., Patel, R.M., “Exopolymer production by Bacillus species”, Carbohydr Polym 34 (1997) 323-327. https://doi.org/10.1016/S0144-8617(97)00132-X
  • [46] Underwood, G.J.C., Fietz, S., Papadimitriou, S., Thomas, D.N., Dieckmann, G.S., “Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic Sea ice”, Mar Ecol Prog Ser 404 (2010) : 1-19. https://doi.org/10.3354/meps08557
  • [47] Kitamura, H., Takahashi, K., Kanamaru, D., “Inhibitory effect of ultrasonic waves on the larval settlement of the barnacle Balanus amphitrite in the laboratory”, Mar Fouling 12(1) (1995) : 9–13. http://dx.doi.org/10.4282/sosj1979.12.9
  • [48] Guo, S., Lee, H.P., Khoo, B.C., “Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement”, J Exp Mar Biol Ecol 409(1) (2011a) : 253–258. https://doi.org/10.1016/j. jembe.2011.09.006
  • [49] Guo, S., Lee, H., Chaw, K., Miklas, J., Teo, S., Dickinson, G., Birch, W., Khoo, B., “Effect of ultrasound on cyprids and juvenile barnacles”, Biofouling 27(2) (2011b) : 185–192. https://doi.org/10.1080/089 27014.2010.551535
  • [50] Gavand, M., McClintock, J., Amsler, C., Peters, R., Angus, R., “Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water”, Mar Pollut Bull 54(11) (2007) : 1777–1788. https://doi.org/10.1016/j.marpolbul.2007.07.012
  • [51] Suzuki, H., Konno, K., “Basic studies on the antifouling by ultrasonic waves for ship’s bottom fouling organisms”, J Tokyo Univ Fish 56 (1970) : 31–48.
  • [52] Seth, N., Chakravarty, P., Khandeparker, L., Anil, A., Pandit, A., “Quantification of the energy required for the destruction of Balanus amphitrite larva by ultrasonic treatment”, J Mar Biol Assoc UK 90(7) (2010) : 1475–1482. https://doi.org/10.1017/S0025315409991548
  • [53] Holm, E.R., Stamper, D.M., Brizzolara, R.A., Barnes, L., Deamer, N., Burkholder, J.M., “Sonication of bacteria phytoplankton and zooplankton: application to treatment of ballast water”, Mar Poll Bull 56(6) (2008) : 1201–1208. https://doi.org/10.1016/j.marpolbul.2008.02.007
  • [54] Leppard, G.G., “The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems”, Sci Total Environ 165 (1995) : 103–131. https://doi.org/10.1016/0048-9697(95)04546-d
  • [55] Ewe, J.A., Abdullah, W.N.W., Bhat, R., Karim, A.A., Liong, M.T., “Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment. Ultrason Sonochem 19 (2012) : 160-173. https://doi.org/10.1016/j.ultsonch.2011.06.013
  • [56] Guimarães, J.T., Silva, E.K., Alvarenga, V.O., Costa, A.L.R., Cunha, R.L., Santana, A.S., Freitas, M.Q., Meireles, M.A.A, Cruz, A.G., “Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels”, Ultrason Sonochem 44 (2018) : 251–260. https://doi.org/10.1016/j.ultsonch.2018.02.012
  • [57] Koua, X., Lia, R., Houa, L., Zhanga, L., Wang, S., “Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms”, Int J Food Microbiol 269 (2018) 89–97. https://doi.org/10.1016/j.ijfoodmicro.2018.01.025
  • [58] Wu, X., Joyce, E.M., Mason, T.J., “The effects of ultrasound on cyanobacteria. Harmful Algae 10 (2011) 738-743. https://doi.org/10.1016/j.hal.2011.06.005
  • [59] Zhu, H.X., Cai, X.Z., Shi, A.L., Hu, B., Yan, S.G., “Microbubble-Mediated Ultrasound Enhances the Lethal Effect of Gentamicin on Planktonic Escherichia coli”, BioMed Res Int 7 (2014). http://dx.doi.org/10.1155/2014/142168
  • [60] Liao, X., Li, J., Suo, Y., Chen, S., Ye, Z., Liu, D., Ding, T., “Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus”, Food Sci Hum Well 7 (2018) : 102–109. https://doi.org/10.1016/j.fshw.2018.01.002
  • [61] Branda, S.S., Vik, A., Friedman, L., Kolter, R., “Biofilm: the matrix revisited”, Trends Microbiol 13 (2005) : 20-26. https://doi.org/10.1016/j.tim.2004.11.006
  • [62] Willis, L.M., Whitfield, C., “Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways”, Carbohydr Res 378 (2013) : 35-44. https://doi.org/10.1016/j.carres.2013.05.007
  • [63] Di Donato, P., Poli, A., Taurisano, V., Abbamondi, G.R., Nicolaus, B., Tommonaro, G., “Recent advances in the study of marine microbial biofilm: from the involvement of quorum sensing in its production up to biotechnological application of the polysaccharide fractions”, J Marine Sci Eng 4 (2016) : 34. https://doi.org/10.3390/jmse4020034
  • [64] Lee, J.W., Yeoman, S.W.G., Allen, A.L., Deng, F., Gross, R.A., Kaplan, D.L., “Biosynthesis of novel exopolymers by Aureobasidium pullulans”, Appl Environ Microbiol 65(12) (1999) : 5262-5271. https://doi.org/10.1128/AEM.65.12.5265-5271.1999
  • [65] Delauney, L., Compére, C., Lehaitre, M., “Biofouling protection for marine environmental sensors”, Ocean Sci Discuss 6(3) (2009) : 2993–3018. www.ocean-sci-discuss.net/6/2993/2009/
  • [66] Yamamoto, K., King, P.M., Wu, X., Mason, T.J., Joyce, E.M., “Effect of ultrasonic frequency and power on the disruption of algal cells”, Ultrason Sonochem 24 (2015) : 165–171. https://doi.org/10.1016/j.ultsonch.2014.11.002
  • [67] Gao, S., Lewis, G.D., Ashokkumar, M., Hemar, Y., “Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria”, Ultrason Sonochem 21 (2014b) : 446–453. http://dx.doi.org/10.1016/j.ultsonch.2013.06.006
  • [68] Thacker, J., “An approach to the mechanism of killing of cells in suspension by ultrasound”, Biochim Biophys Acta Gen Subj 304(2) (1973) : 240–248. https://doi.org/10.1016/0304-4165(73)90241-9
  • [69] Nesaratnam, S.T., Wase, D.A.J., Blakebrough, N., “The susceptibility to ultrasonic disintegration of Klebsiella pneumoniae NCTC 418”, Eur J Appl Microbiol Biotechnol 15(1) (1982) : 56–58. https://doi.org/10.1007/BF01875402
  • [70] Wietzikoski Lovato, E.C., Velasquez, P.A.G., Oliveira, C.S.O., Baruffi, C., Anghinoni, T., Machado, R.C., Lívero, F.A.R., Wietzikoski Sato, S., Martins, L.A., “High frequency equipment promotes antibacterial effects dependent on intensity and exposure time”, Clin Cosmet Investig Dermatol 11 (2018) : 131-135. https://doi.org/10.2147/CCID.S156282

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Halit KUŞKU (Primary Author)
CANAKKALE ONSEKIZ MART UNIVERSITY
0000-0003-4109-2370
Türkiye

Thanks This study was carried out within the scope of the "Struggle Mobilization" against Mucilage, initiated by the Minister of Environment and Urbanization in Turkey, within the framework of the Marmara Sea Action Plan. Prof. Dr. Sedat MURAT, President of Canakkale Onsekiz Mart University is acknowledged for his valuable support to the laboratories of Aquaculture and Marine Technology Engineering and at the Faculty of Marine Sciences and Technology.
Early Pub Date March 21, 2022
Publication Date April 30, 2022
Published in Issue Year 2022, Volume 7, Issue 1

Cite

Bibtex @research article { jetas1034671, journal = {Journal of Engineering Technology and Applied Sciences}, eissn = {2548-0391}, address = {Yıldız Teknik Üniversitesi, Kimya Metalurji Fakültesi, Mathematik Mühendisliği, oda no:A235}, publisher = {Muhammet KURULAY}, year = {2022}, volume = {7}, number = {1}, pages = {31 - 44}, doi = {10.30931/jetas.1034671}, title = {Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study}, key = {cite}, author = {Kuşku, Halit} }
APA Kuşku, H. (2022). Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study . Journal of Engineering Technology and Applied Sciences , 7 (1) , 31-44 . DOI: 10.30931/jetas.1034671
MLA Kuşku, H. "Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study" . Journal of Engineering Technology and Applied Sciences 7 (2022 ): 31-44 <https://dergipark.org.tr/en/pub/jetas/issue/68948/1034671>
Chicago Kuşku, H. "Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study". Journal of Engineering Technology and Applied Sciences 7 (2022 ): 31-44
RIS TY - JOUR T1 - Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study AU - Halit Kuşku Y1 - 2022 PY - 2022 N1 - doi: 10.30931/jetas.1034671 DO - 10.30931/jetas.1034671 T2 - Journal of Engineering Technology and Applied Sciences JF - Journal JO - JOR SP - 31 EP - 44 VL - 7 IS - 1 SN - -2548-0391 M3 - doi: 10.30931/jetas.1034671 UR - https://doi.org/10.30931/jetas.1034671 Y2 - 2022 ER -
EndNote %0 Journal of Engineering Technology and Applied Sciences Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study %A Halit Kuşku %T Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study %D 2022 %J Journal of Engineering Technology and Applied Sciences %P -2548-0391 %V 7 %N 1 %R doi: 10.30931/jetas.1034671 %U 10.30931/jetas.1034671
ISNAD Kuşku, Halit . "Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study". Journal of Engineering Technology and Applied Sciences 7 / 1 (April 2022): 31-44 . https://doi.org/10.30931/jetas.1034671
AMA Kuşku H. Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study. jetas. 2022; 7(1): 31-44.
Vancouver Kuşku H. Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study. Journal of Engineering Technology and Applied Sciences. 2022; 7(1): 31-44.
IEEE H. Kuşku , "Effects of Exposure Time of Sonication on Physical Dispersal of Mucilage: A Preliminary Study", Journal of Engineering Technology and Applied Sciences, vol. 7, no. 1, pp. 31-44, Apr. 2022, doi:10.30931/jetas.1034671