BibTex RIS Cite

Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran

Year 2016, Volume: 66 Issue: 1, 46 - 58, 01.01.2016
https://doi.org/10.17099/jffiu.26733

Abstract

Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran

Abstract: Wetland Surface Temperature (WST) maps are an increasingly important parameter to understand the extensive range of existing processes in wetlands. The Wetlands placed in neighborhoods of agricultural and industrial lands are exposed to more chemical pollutants and pesticides that can lead to spatial and temporal variations of their surface temperature. Therefore, more studies are required for temperature modeling and the management and conservation of these variations in their ecosystem. Landsat 8 time series data of Sulduz region, Western Azerbaijan province, Iran were used in this study. The WST was derived using a mono-window algorithm after implementation of atmospheric correction. The NDVI (Normalized Differential Vegetation Index) threshold method was also employed to determine the surface emissivity. Our findings show that the WST experienced extensive spatial and temporal variations. It reached its maximum value in June and also experienced the highest mean in the same month. In this research, August (2013.12.08) had a lowest spatial standard deviation regarding surface temperature and June (2013.06.28) had the highest one. Wetlands' watersides adjacent to industrial zones have a higher surface temperature than the middle lands of these places. The map obtained from the WST variance over time can be exploited to reveal thermal stable and unstable zones. The outcome demonstrates that land use, land cover effectively contribute to wetland ecosystem health. The results are useful in the water management, preventive efforts against drying of wetland and evapotranspiration modeling. The approach employed in this research indicates that remote sensing is a valuable, low-cost and stable tool for thermal monitoring of wetlands health.

Keywords: WST, spatial variations, temporal variations, NDVI

İran Sulduz bölgesinde Landsat-8 uydu görüntüleri kullanılarak sulak alanların yüzey sıcaklığının mekansal ve zamansal olarak modellenmesi

Özet: Sulak alanların yüzey sıcaklık (WST) haritaları, sulak alanlarda mevcut süreçlerin geniş kapsamlı olarak anlaşılmasında giderek daha önemli bir parametre haline gelmektedir. Tarım ve sanayi arazilerine komşu sulak alanlar, daha fazla kimyasal kirletici ve pestisite maruz kalması nedeniyle, yüzey sıcaklığının mekansal ve zamansal değişimlere neden olabilmektedir. Bu nedenle, sıcaklık modellemesi ve zamansal ve mekansal değişimlerin tespit edilmesi, sulak alan ekosistemlerinde korunması ve yönetimi için daha fazla çalışma gereklidir. Bu çalışmada, İran Sulduz bölgesine ait Landsat 8 zaman serisi verileri kullanılmıştır. WST haritaları atmosferik düzeltmeler yapıldıktan sonra tek pencere (mono-window) algoritmaları kullanılarak türetilmektedir. Ayrıca Normalleştirilmiş Fark Vejetasyon İndeksi (NDVI) (Normalized Differential Vegetation Index) de yüzey emisyonunu belirlemede kullanılmaktadır. Bulgularımız WST haritalarının geniş zamansal ve mekansal varyasyonlar içerdiğini göstermiştir. En yüksek değer ve en yüksek ortalama Haziran ayında olmaktadır. Araştırmada yüzey ısısı açısından Ağustos ayı (12.08.2013) en düşük mekansal standart sapmayı gösterirken, en yüksek mekansal standart sapma değeri ise Haziran ayı (28.06.2013)'nda olmuştur. Endüstriyel alanlara bitişik sulak alanlar daha iç kısımlardakilere nazaran daha yüksek yüzey ısısına sahiptirler. WSTlerden elde edilen haritalar ısısal olarak stabil ve stabil olmayan alanların belirlenmesinde kullanılabilir. Sonuçlar; arazi kullanımı ve arazi örtüsünün sulak alanlar ekosisteminin sağlık durumunu etkilediğini göstermektedir. Bu açıdan elde edilen sonuçlar, su yönetimi, sulak alanların kurumaması için alınabilecek önlemlere ve evapotranspirasyon modellemesine katkıda bulunacaktır. Bu çalışmadaki yaklaşım; uzaktan algılamanın değerli, düşük maliyetli ve sulak alanların sıcaklık değerlerinin izlenmesi açısından son derece uygun bir araç olduğunu göstermektedir.

Anahtar Kelimeler: WST, mekansal değişim, zamansal değişim, NDVI

Received (Geliş tarihi): 25.12.2014 - Revised (Düzeltme tarihi): 24.01.2015 -   Accepted (Kabul tarihi): 24.01.2015

To cite this article: Eisavi, V., Yazdi, A.M., Niknezhad, S.A., 2016. Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran. Journal of the Faculty of Forestry Istanbul University 66(1): 46-58. DOI: 10.17099/jffiu.26733

References

  • Ahn, Y., Shanmugam, P., Lee, J., Kang, Y., 2006. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Marine Environmental Research 61: 186–201, doi: http://dx.doi.org/10.1016/j.marenvres.2005.09.001
  • Alcantara, E., Barbosa, C., Stech, J., Novo, E., Shimabukuro, Y., 2009. Improving the spectral unmixing algorithm to map water turbidity distributions. Environmental Modelling and Software 24: 1051–1061, doi: http://dx.doi.org/10.1016/j.envsoft.2009.02.013
  • Alcantara, E.S., Tech, J., Lorenzetti, J., Bonnet, M.P., Casamitjana, X., Assireu, A.T., Novo, E., 2010. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment 114: 2651–2665.
  • Barsi, J.A., Barker, J.L., Schott, J.R., 2003. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument. Paper presented at the IGARSS03, Toulouse, France, doi: http://dx.doi.org/10.1109/IGARSS.2003.1294665
  • Beauchamp, E.G., Trevors, J.T., Paul, J.W., 1989. Carbon sources for bacterial denitrification. Advance in Soil Science 10:113–142.
  • Bergstedt, R., Argyle, R.L., Seelye, J.G., Scribner, K.T., Curtis, G.L., 2003. In situ determination of the annual thermal habitat use by Lake Trout (Salvinus namaycush) in Lake Huron. Journal of Great Lakes Research 29: 347–361.
  • Binh, T.N.K.D., Vromant, N., Hung, N.T., Hens, L., Boon, E.K., 2005. Landcover changes between 1968 and 2003 in CaiNuoc, Ca Mau Peninsula, Vietnam Environment, Development and Sustainability 7: 519–536.
  • Bremner, J.M., Shaw, K., 1958. Denitrification in soil. II. Factors affecting denitrification. Journal of Agricultural Science 51: 40–52.
  • Burkett, V.R., Wilcox, D.A., Stottlemeyer, R., Barrow, W., Fagre, D., Baron, J., Price, J., Nielsen, J.L., Allen, C.D., Peterson, D.L., Ruggerone, G., Doyle, T., 2005. Nonlinear dynamics in ecosystem response to climate change: Case studies and policy implications. Ecological Complexity 2: 357-394, doi: http://dx.doi.org/10.1016/j.ecocom.2005.04.010
  • Bussières, N., Granger, R.J., 2007. Estimation of Water Temperature of Large Lakes in Cold Climate Regions during the Period of Strong Coupling between Water and Air Temperature Fluctuations. Journal of Atmospheric and Oceanic Technology 24: 285-296.
  • Chavula, G., Brezonik, P., Thenkabail, P., Johnson, T., Bauer, M., 2009. Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery. Physics and Chemistry of the Earth 34: 749-754, doi: http://dx.doi.org/10.1016/j.pce.2009.08.001
  • Cherkauer, K, A., Burges, S.J., Handcock, R.N., Kay, J.E., Kampf, S.K., Gillespie, A.R., 2005. Assessing satellitebased and aircraft-based thermal infrared remote sensing for monitoring Pacific Northwest River temperature. Journal of the American Water Resources Association 41: 1149–1159.
  • Coats, R., 2010. Climate change in the Tahoe basin: regional trends, impacts and drivers. Climate Change 102: 435- 466, doi: http://dx.doi.org/10.1007/s10584-010-9828-3
  • Cooke, S.J., Bunt, C.M., Schreer, J.F., 2004. Understanding fish behavior, distribution, and survival in thermal effluents using fixed telemetry arrays: a case study of smallmouth bass in a discharge canal during winter. Environmental Management 33: 140–150.
  • Cooper, D.I., Asrar, G., 1989. Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tall grass prairie. Remote Sensing of Environment Supports 27: 93–102.
  • Dash, P., Gottsche, F.M., Olesen, F.S., Fischer, H., 2002. Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. International Journal Remote Sensing 23:2563–2594, doi: http://dx.doi.org/10.1080/01431160110115041
  • Fiedler, E., Martin, M., Roberts-Jones, J., 2012. Lake Surface Water Temperature in the operational OSTIA system. Met Office Forecasting Research Technical Report no. 565.
  • Gibbons, D.E., Wukelic, G.E., 1989. Application of Landsat thematic mapper data for coastal thermal plume analysis at Diablo Canyon. Photogrammetric Engineering and Remote Sensing S 55: 903–909.
  • Gillet, C., Péquin, P., 2006. Effect of temperature changes on the reproductive cycle of roach in Lake Geneva from 1983 to 2001. Journal of Fish Biology 69: 518–534, doi: http://dx.doi.org/10.1111/j.1095-8649.2006.01123.x
  • Gilman, K., 1994. Hydrology and wetland conservation. Chichester. Wiley.
  • Gleason, R.A., Euliss, N.H., Hubbard, D.E., Duffy, W.G., 2003. Effect of sediment load on the emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23: 26–34, doi: http://dx.doi.org/10.1672/0277-5212(2003)023%5B0026:EOSLOE%5D2.0.CO;2
  • Ham, J., Toran, L., Cruz, J., 2006. Effect of upstream ponds on stream temperature. Environmental Geology 50: 55– 61, doi: http://dx.doi.org/10.1007/s00254-006-0186-4
  • Harding, J.S., Young, R.G., Hayes, J.W., Shearer, K.A., Stark, J.D., 1999. Changes in agricultural intensity and river health along a river continuum. Freshwater Biology Journal 42: 345–357, doi: http://dx.doi.org/10.1046/j.1365- 2427.1999.444470.x
  • Jeppesen, E., Mehner, T., WinfieldI, J., 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694:1–39, doi: http://dx.doi.org/10.1007/s10750-012-1182-1
  • Klotz, R.L., 1985. Factors controlling phosphorus limitation in stream sediments. Limnology and Oceanography 30: 543–553, doi: http://dx.doi.org/10.4319/lo.1985.30.3.0543
  • Lamaro, A.A., Marinelarena, A., Torrusio, S., Sala, S., 2013. Water surface temperature estimation from Landsat7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del RıoTercero (Cordoba, Argentina). Advances in Space Research 51: 492–500.
  • Matzinger, A., Schmid, M., Veljanoska-Sarafiloska, E., Patceva, S., Guseska, D., Wagner, B., Müller, B., Sturm, M., Wüest, A., 2007. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnology and Oceanography 52: 338–353, doi: http://dx.doi.org/10.4319/lo.2007.52.1.0338
  • Mortsch, L.D., Quinn, F.H., 1996. Climate change scenarios for Great Lake basin ecosystem studies. Limnology and Oceanography 41: 903–911, doi: http://dx.doi.org/10.4319/lo.1996.41.5.0903
  • Nehorai, R., Lensky, I.M., Lensky, N.G., Shiff, S., 2009. Remote sensing of the Dead Sea surface temperature. Journal of Geophysical Research 114: 4-11,doi: http://dx.doi.org/10.1029/2008JC005196
  • Novo, E.L., Barbosa, C.C.F., Freitas, R.M., Shimabukuro, Y.E., Melack, J.M., Pereira-Filho, W., 2006. Seasonal changes in chlorophyll distribution in Amazon flood plain lakes derived from MODIS images. Limnology 7: 153–161.
  • Paerl, H.W., Paul, V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363, doi: http://dx.doi.org/10.1016/j.watres.2011.08.002
  • Piao, D.X., Wang, F.K., 2011. Environmental conditions and the protection counter-measures for waters of Lake Xingkai. Lake Science 23:196–202.
  • Reinart, A., Reinhold, M., 2008. Mapping surface temperature in large lakes with MODIS data. Remote Sensing of Environment 112: 603–611, doi: http://dx.doi.org/10.1016/j.rse.2007.05.015
  • Relyea, R.A., 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15: 618–627, doi: http://dx.doi.org/10.1890/03-5342
  • Schneider, P., Hook, S.J., Radocinski, R.G., Corlett, G.K., Hulley, G.C., Schladow, S.G., Steissberg, T.E., 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophysical Research Letters 36: L22402, doi: http://dx.doi.org/10.1029/2009GL040846
  • Sharpley, A.N., Withers, P.J., 1994. The environmentally-sound management of agricultural phosphorus. Fertilizer Research 39: 133–146, doi: http://dx.doi.org/10.1007/BF00750912
  • Sobrino, J.A., Jiménez, M., Paolinib, C.J., 2004. surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90: 434-440, doi: http://dx.doi.org/10.1016/j.rse.2004.02.003
  • Srivastava, P.K., Majumdar, T.J., Bhattacharya, A.K., 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research 43: 1563–1574, doi: http://dx.doi.org/10.1016/j.asr.2009.01.023
  • Strub, P.T., Powell, T.M., 1986. Wind-driven surface transport in stratified closed basins: Direct versus residual calculation. Geophysical Journal International 91:8497–8508.
  • Steissberg, T.E., Hook, S.J., Schladow, S.G., 2005. Measuring surface currents in lakes with high spatial resolution thermal infrared imagery. Geophysical Research Letters 32: L11402, doi: http://dx.doi.org/10.1029/2005GL022912
  • Steissberg, T.S., Hook, S., Schladow, S., 2005. Characterizing partial upwellings and surface circulation at Lake Tahoe, California–Nevada, USA with thermal infrared images. Remote Sensing of Environment 99:2-15, doi:http://dx.doi.org/10.1016/j.rse.2005.06.011
  • Strub, P.T., Powell, T.M., 1987. Surface temperature and transport in Lake Tahoe: Inferences from satellite (AVHRR) imagery. Continental Shelf Research 7:1001–1013, doi: http://dx.doi.org/10.1016/0278-4343(87)90096-3
  • Wan, Z., 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sensing of Environment 112: 59-74, doi: http://dx.doi.org/10.1016/j.rse.2006.06.026
  • Welch, R., Ehlers, W., 1987. Merging Multi resolution SPOT HRV and Landsat TM Data. Photogrammetric Engineering and Remote Sensing S 53: 301-303.
  • Wooster, M., Patterson, G., Loftie, R., Sear, C., 2001. Derivation and validation of the seasonal thermal structure of Lake Malawi using multi-satellite AVHRR observations. International Journal of Remote Sensing 22: 2953–2972, doi: http://dx.doi.org/10.1080/01431160010006999
  • Wukelic, G.E., Gibbons, D.E., Martucci, I.M., Foote, H.P., 1989. Radiometric calibration of Landsat thematic mapper thermal band. Remote Sensing of Environment 28: 339–347, doi: http://dx.doi.org/10.1016/0034-4257(89)90125-9
  • Zoran, M.A., Nicola, D.N., Talianu, C.L., Ciobanu, M., Ciuciu, J.G., 2005. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data, in: Manfred Ehlers, Ulrich Michel (Eds.). Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V.

İran Sulduz bölgesinde Landsat-8 uydu görüntüleri kullanılarak sulak alanların yüzey sıcaklığının mekansal ve zamansal olarak modellenmesi

Year 2016, Volume: 66 Issue: 1, 46 - 58, 01.01.2016
https://doi.org/10.17099/jffiu.26733

Abstract

Sulak alanların yüzey sıcaklık (WST) haritaları, sulak alanlarda mevcut süreçlerin geniş kapsamlı olarak anlaşılmasında giderek daha önemli bir parametre haline gelmektedir. Tarım ve sanayi arazilerine komşu sulak alanlar, daha fazla kimyasal kirletici ve pestisite maruz kalması nedeniyle, yüzey sıcaklığının mekansal ve zamansal değişimlere neden olabilmektedir. Bu nedenle, sıcaklık modellemesi ve zamansal ve mekansal değişimlerin tespit edilmesi, sulak alan ekosistemlerinde korunması ve yönetimi için daha fazla çalışma gereklidir. Bu çalışmada, İran Sulduz bölgesine ait Landsat 8 zaman serisi verileri kullanılmıştır. WST haritaları atmosferik düzeltmeler yapıldıktan sonra tek pencere (mono-window) algoritmaları kullanılarak türetilmektedir. Ayrıca Normalleştirilmiş Fark Vejetasyon İndeksi (NDVI) (Normalized Differential Vegetation Index)’de yüzey emisyonunu belirlemede kullanılmaktadır. Bulgularımız WST haritalarının geniş zamansal ve mekansal varyasyonlar içerdiğini göstermiştir. En yüksek değer ve en yüksek ortalama Haziran ayında olmaktadır. Araştırmada yüzey ısısı açısından Ağustos ayı (12.08.2013) en düşük mekansal standart sapmayı gösterirken, en yüksek mekansal standart sapma değeri ise Haziran ayı (28.06.2013)'nda olmuştur. Endüstriyel alanlara bitişik sulak alanlar daha iç kısımlardakilere nazaran daha yüksek yüzey ısısına sahiptirler. WST’lerden elde edilen haritalar ısısal olarak stabil ve stabil olmayan alanların belirlenmesinde kullanılabilir. Sonuçlar; arazi kullanımı ve arazi örtüsünün sulak alanlar ekosisteminin sağlık durumunu etkilediğini göstermektedir. Bu açıdan elde edilen sonuçlar, su yönetimi, sulak alanların kurumaması için alınabilecek önlemlere ve evapotranspirasyon modellemesine katkıda bulunacaktır. Bu çalışmadaki yaklaşım; uzaktan algılamanın değerli, düşük maliyetli ve sulak alanların sıcaklık değerlerinin izlenmesi açısından son derece uygun bir araç olduğunu göstermektedir.

References

  • Ahn, Y., Shanmugam, P., Lee, J., Kang, Y., 2006. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Marine Environmental Research 61: 186–201, doi: http://dx.doi.org/10.1016/j.marenvres.2005.09.001
  • Alcantara, E., Barbosa, C., Stech, J., Novo, E., Shimabukuro, Y., 2009. Improving the spectral unmixing algorithm to map water turbidity distributions. Environmental Modelling and Software 24: 1051–1061, doi: http://dx.doi.org/10.1016/j.envsoft.2009.02.013
  • Alcantara, E.S., Tech, J., Lorenzetti, J., Bonnet, M.P., Casamitjana, X., Assireu, A.T., Novo, E., 2010. Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment 114: 2651–2665.
  • Barsi, J.A., Barker, J.L., Schott, J.R., 2003. An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument. Paper presented at the IGARSS03, Toulouse, France, doi: http://dx.doi.org/10.1109/IGARSS.2003.1294665
  • Beauchamp, E.G., Trevors, J.T., Paul, J.W., 1989. Carbon sources for bacterial denitrification. Advance in Soil Science 10:113–142.
  • Bergstedt, R., Argyle, R.L., Seelye, J.G., Scribner, K.T., Curtis, G.L., 2003. In situ determination of the annual thermal habitat use by Lake Trout (Salvinus namaycush) in Lake Huron. Journal of Great Lakes Research 29: 347–361.
  • Binh, T.N.K.D., Vromant, N., Hung, N.T., Hens, L., Boon, E.K., 2005. Landcover changes between 1968 and 2003 in CaiNuoc, Ca Mau Peninsula, Vietnam Environment, Development and Sustainability 7: 519–536.
  • Bremner, J.M., Shaw, K., 1958. Denitrification in soil. II. Factors affecting denitrification. Journal of Agricultural Science 51: 40–52.
  • Burkett, V.R., Wilcox, D.A., Stottlemeyer, R., Barrow, W., Fagre, D., Baron, J., Price, J., Nielsen, J.L., Allen, C.D., Peterson, D.L., Ruggerone, G., Doyle, T., 2005. Nonlinear dynamics in ecosystem response to climate change: Case studies and policy implications. Ecological Complexity 2: 357-394, doi: http://dx.doi.org/10.1016/j.ecocom.2005.04.010
  • Bussières, N., Granger, R.J., 2007. Estimation of Water Temperature of Large Lakes in Cold Climate Regions during the Period of Strong Coupling between Water and Air Temperature Fluctuations. Journal of Atmospheric and Oceanic Technology 24: 285-296.
  • Chavula, G., Brezonik, P., Thenkabail, P., Johnson, T., Bauer, M., 2009. Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery. Physics and Chemistry of the Earth 34: 749-754, doi: http://dx.doi.org/10.1016/j.pce.2009.08.001
  • Cherkauer, K, A., Burges, S.J., Handcock, R.N., Kay, J.E., Kampf, S.K., Gillespie, A.R., 2005. Assessing satellitebased and aircraft-based thermal infrared remote sensing for monitoring Pacific Northwest River temperature. Journal of the American Water Resources Association 41: 1149–1159.
  • Coats, R., 2010. Climate change in the Tahoe basin: regional trends, impacts and drivers. Climate Change 102: 435- 466, doi: http://dx.doi.org/10.1007/s10584-010-9828-3
  • Cooke, S.J., Bunt, C.M., Schreer, J.F., 2004. Understanding fish behavior, distribution, and survival in thermal effluents using fixed telemetry arrays: a case study of smallmouth bass in a discharge canal during winter. Environmental Management 33: 140–150.
  • Cooper, D.I., Asrar, G., 1989. Evaluating atmospheric correction models for retrieving surface temperatures from the AVHRR over a tall grass prairie. Remote Sensing of Environment Supports 27: 93–102.
  • Dash, P., Gottsche, F.M., Olesen, F.S., Fischer, H., 2002. Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. International Journal Remote Sensing 23:2563–2594, doi: http://dx.doi.org/10.1080/01431160110115041
  • Fiedler, E., Martin, M., Roberts-Jones, J., 2012. Lake Surface Water Temperature in the operational OSTIA system. Met Office Forecasting Research Technical Report no. 565.
  • Gibbons, D.E., Wukelic, G.E., 1989. Application of Landsat thematic mapper data for coastal thermal plume analysis at Diablo Canyon. Photogrammetric Engineering and Remote Sensing S 55: 903–909.
  • Gillet, C., Péquin, P., 2006. Effect of temperature changes on the reproductive cycle of roach in Lake Geneva from 1983 to 2001. Journal of Fish Biology 69: 518–534, doi: http://dx.doi.org/10.1111/j.1095-8649.2006.01123.x
  • Gilman, K., 1994. Hydrology and wetland conservation. Chichester. Wiley.
  • Gleason, R.A., Euliss, N.H., Hubbard, D.E., Duffy, W.G., 2003. Effect of sediment load on the emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23: 26–34, doi: http://dx.doi.org/10.1672/0277-5212(2003)023%5B0026:EOSLOE%5D2.0.CO;2
  • Ham, J., Toran, L., Cruz, J., 2006. Effect of upstream ponds on stream temperature. Environmental Geology 50: 55– 61, doi: http://dx.doi.org/10.1007/s00254-006-0186-4
  • Harding, J.S., Young, R.G., Hayes, J.W., Shearer, K.A., Stark, J.D., 1999. Changes in agricultural intensity and river health along a river continuum. Freshwater Biology Journal 42: 345–357, doi: http://dx.doi.org/10.1046/j.1365- 2427.1999.444470.x
  • Jeppesen, E., Mehner, T., WinfieldI, J., 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694:1–39, doi: http://dx.doi.org/10.1007/s10750-012-1182-1
  • Klotz, R.L., 1985. Factors controlling phosphorus limitation in stream sediments. Limnology and Oceanography 30: 543–553, doi: http://dx.doi.org/10.4319/lo.1985.30.3.0543
  • Lamaro, A.A., Marinelarena, A., Torrusio, S., Sala, S., 2013. Water surface temperature estimation from Landsat7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del RıoTercero (Cordoba, Argentina). Advances in Space Research 51: 492–500.
  • Matzinger, A., Schmid, M., Veljanoska-Sarafiloska, E., Patceva, S., Guseska, D., Wagner, B., Müller, B., Sturm, M., Wüest, A., 2007. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnology and Oceanography 52: 338–353, doi: http://dx.doi.org/10.4319/lo.2007.52.1.0338
  • Mortsch, L.D., Quinn, F.H., 1996. Climate change scenarios for Great Lake basin ecosystem studies. Limnology and Oceanography 41: 903–911, doi: http://dx.doi.org/10.4319/lo.1996.41.5.0903
  • Nehorai, R., Lensky, I.M., Lensky, N.G., Shiff, S., 2009. Remote sensing of the Dead Sea surface temperature. Journal of Geophysical Research 114: 4-11,doi: http://dx.doi.org/10.1029/2008JC005196
  • Novo, E.L., Barbosa, C.C.F., Freitas, R.M., Shimabukuro, Y.E., Melack, J.M., Pereira-Filho, W., 2006. Seasonal changes in chlorophyll distribution in Amazon flood plain lakes derived from MODIS images. Limnology 7: 153–161.
  • Paerl, H.W., Paul, V.J., 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research 46: 1349–1363, doi: http://dx.doi.org/10.1016/j.watres.2011.08.002
  • Piao, D.X., Wang, F.K., 2011. Environmental conditions and the protection counter-measures for waters of Lake Xingkai. Lake Science 23:196–202.
  • Reinart, A., Reinhold, M., 2008. Mapping surface temperature in large lakes with MODIS data. Remote Sensing of Environment 112: 603–611, doi: http://dx.doi.org/10.1016/j.rse.2007.05.015
  • Relyea, R.A., 2005. The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15: 618–627, doi: http://dx.doi.org/10.1890/03-5342
  • Schneider, P., Hook, S.J., Radocinski, R.G., Corlett, G.K., Hulley, G.C., Schladow, S.G., Steissberg, T.E., 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophysical Research Letters 36: L22402, doi: http://dx.doi.org/10.1029/2009GL040846
  • Sharpley, A.N., Withers, P.J., 1994. The environmentally-sound management of agricultural phosphorus. Fertilizer Research 39: 133–146, doi: http://dx.doi.org/10.1007/BF00750912
  • Sobrino, J.A., Jiménez, M., Paolinib, C.J., 2004. surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment 90: 434-440, doi: http://dx.doi.org/10.1016/j.rse.2004.02.003
  • Srivastava, P.K., Majumdar, T.J., Bhattacharya, A.K., 2009. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research 43: 1563–1574, doi: http://dx.doi.org/10.1016/j.asr.2009.01.023
  • Strub, P.T., Powell, T.M., 1986. Wind-driven surface transport in stratified closed basins: Direct versus residual calculation. Geophysical Journal International 91:8497–8508.
  • Steissberg, T.E., Hook, S.J., Schladow, S.G., 2005. Measuring surface currents in lakes with high spatial resolution thermal infrared imagery. Geophysical Research Letters 32: L11402, doi: http://dx.doi.org/10.1029/2005GL022912
  • Steissberg, T.S., Hook, S., Schladow, S., 2005. Characterizing partial upwellings and surface circulation at Lake Tahoe, California–Nevada, USA with thermal infrared images. Remote Sensing of Environment 99:2-15, doi:http://dx.doi.org/10.1016/j.rse.2005.06.011
  • Strub, P.T., Powell, T.M., 1987. Surface temperature and transport in Lake Tahoe: Inferences from satellite (AVHRR) imagery. Continental Shelf Research 7:1001–1013, doi: http://dx.doi.org/10.1016/0278-4343(87)90096-3
  • Wan, Z., 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sensing of Environment 112: 59-74, doi: http://dx.doi.org/10.1016/j.rse.2006.06.026
  • Welch, R., Ehlers, W., 1987. Merging Multi resolution SPOT HRV and Landsat TM Data. Photogrammetric Engineering and Remote Sensing S 53: 301-303.
  • Wooster, M., Patterson, G., Loftie, R., Sear, C., 2001. Derivation and validation of the seasonal thermal structure of Lake Malawi using multi-satellite AVHRR observations. International Journal of Remote Sensing 22: 2953–2972, doi: http://dx.doi.org/10.1080/01431160010006999
  • Wukelic, G.E., Gibbons, D.E., Martucci, I.M., Foote, H.P., 1989. Radiometric calibration of Landsat thematic mapper thermal band. Remote Sensing of Environment 28: 339–347, doi: http://dx.doi.org/10.1016/0034-4257(89)90125-9
  • Zoran, M.A., Nicola, D.N., Talianu, C.L., Ciobanu, M., Ciuciu, J.G., 2005. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data, in: Manfred Ehlers, Ulrich Michel (Eds.). Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V.
There are 47 citations in total.

Details

Primary Language English
Journal Section Research Articles (Araştırma Makalesi)
Authors

Vahid Eisavi

Ahmad Maleknezhad Yazdi

Seyeed Ali Niknezhad This is me

Publication Date January 1, 2016
Published in Issue Year 2016 Volume: 66 Issue: 1

Cite

APA Eisavi, V., Maleknezhad Yazdi, A., & Niknezhad, S. A. (2016). Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran. Journal of the Faculty of Forestry Istanbul University, 66(1), 46-58. https://doi.org/10.17099/jffiu.26733
AMA Eisavi V, Maleknezhad Yazdi A, Niknezhad SA. Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran. J FAC FOR ISTANBUL U. January 2016;66(1):46-58. doi:10.17099/jffiu.26733
Chicago Eisavi, Vahid, Ahmad Maleknezhad Yazdi, and Seyeed Ali Niknezhad. “Spatial and Temporal Modeling of Wetland Surface Temperature Using Landsat-8 Imageries in Sulduz, Iran”. Journal of the Faculty of Forestry Istanbul University 66, no. 1 (January 2016): 46-58. https://doi.org/10.17099/jffiu.26733.
EndNote Eisavi V, Maleknezhad Yazdi A, Niknezhad SA (January 1, 2016) Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran. Journal of the Faculty of Forestry Istanbul University 66 1 46–58.
IEEE V. Eisavi, A. Maleknezhad Yazdi, and S. A. Niknezhad, “Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran”, J FAC FOR ISTANBUL U, vol. 66, no. 1, pp. 46–58, 2016, doi: 10.17099/jffiu.26733.
ISNAD Eisavi, Vahid et al. “Spatial and Temporal Modeling of Wetland Surface Temperature Using Landsat-8 Imageries in Sulduz, Iran”. Journal of the Faculty of Forestry Istanbul University 66/1 (January 2016), 46-58. https://doi.org/10.17099/jffiu.26733.
JAMA Eisavi V, Maleknezhad Yazdi A, Niknezhad SA. Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran. J FAC FOR ISTANBUL U. 2016;66:46–58.
MLA Eisavi, Vahid et al. “Spatial and Temporal Modeling of Wetland Surface Temperature Using Landsat-8 Imageries in Sulduz, Iran”. Journal of the Faculty of Forestry Istanbul University, vol. 66, no. 1, 2016, pp. 46-58, doi:10.17099/jffiu.26733.
Vancouver Eisavi V, Maleknezhad Yazdi A, Niknezhad SA. Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran. J FAC FOR ISTANBUL U. 2016;66(1):46-58.