Research Article
BibTex RIS Cite

Saf ve karışık meşe, kayın meşcerelerinde ölü örtü dökümü ve bu yolla toprağa verilen besin maddeleri

Year 2017, Volume: 67 Issue: 2, 185 - 200, 01.07.2017
https://doi.org/10.17099/jffiu.301602

Abstract

Ölü örtü dökümü ve ayrışması, besin maddelerinin toprak üstü ekosistemden toprak sistemine geçişini sağlayan önemli bir süreçtir. Orman ekosisteminde uzun dönem besin durumunun korunmasını sağlar. Orman ekosistemlerinin sağlıklı işleyebilmesi için, ölü örtü dökümü ile toprak canlıları için enerji ve besin girdisinin bilinmesi gerekmektedir. Atatürk Arboretumu’nda, saf ve karışık meşe (Quercus petraea (Mattuschka) Liebl.), kayın (Fagus orientalis Lipsky) meşcerelerinde yürütülen bu çalışmanın amacı ölü örtü dökümü ve bu yolla 2009-2011 yılları arasında ekosisteme geri verilen besin madde miktarının belirlenmesidir. Bu amaç ile belirlenen çalışma alanlarında ölü örtü kapanları kullanılmıştır. Kapanlara düşen bitki kısımları yaprak, dal ve diğer kısımlar (palamut, çiçek, kabuk vb.) olarak ayrılmıştır. Örneklerde C, N, P, K, Ca, Na, Mg, Mn, Fe, Al, Zn, Pb, Ni ve Cu içerikleri belirlenmiştir. Çalışmada her üç alanda da en yüksek ölü örtü döküm miktarı 2010 yılında ölçülmüştür. Toplam ölü örtü dökümü örnekleme alanlarında ortalama 3947-4578 kg/ha olarak bulunmuştur. Dökümle gelen yaprak miktarı ortalama olarak meşe, kayın ve meşe-kayın alanlarında sırası ile %86, %62 ve %75 olarak belirlenmiştir. Element yoğunluğu genel olarak en fazla yapraklarda en az dallarda bulunmaktadır. Tüm alanlarda element yoğunluğunun genel olarak C>Ca>N>Mg>K>Mn>P>Al>Fe>Na>Zn>Cu>Ni>Pb şeklinde sıralandığı ortaya çıkmıştır. Döküm yolu ile gelen ölü örtü elemanları arasında istatistiksel fark bulunurken saf ve karışık alanlar arasında ve yıllara göre istatistiksel fark bulunmamıştır.


Anahtar Kelimeler: Ölü örtü, döküm bileşenleri, makro besin maddeleri, mikro besin maddeleri, meşe, kayın, karışık meşcere,


Received (Geliş): 31.10.2016 - Revised (Düzeltme): 29.11.2016 -   Accepted (Kabul): 02.01.2017


Cite (Atıf): Cakir, M., Akburak, S. 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University 67(2): 178-193. DOI: 10.17099/jffiu.301602

References

  • Augusto, L., Ranger, J., Binkley, D. , Rothe, A. 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science 59(3): 233-253.
  • Austin, A.T., Vivanco, L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442(7102): 555-558.
  • Berg, B., McClaugherty, C. 2014. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin Heidelberg.
  • Bernhard-Reversat, F. 1972. Decomposition de la litiere de feuilles en foret ombrophile de basse Cote-d’Ivoire. Oecologia plantarum 7(3): 2782-2797.
  • Bray, J.R., Gorham, E. 1964. Litter production in forests of the world. In: Advances in ecological research, pp. 101-157.
  • Carlisle, A., Brown, A., White, E. 1966. Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak (Quercus petraea) woodland. The Journal of Ecology 65-85.
  • Çakır, M. 2013. Toprak Eklembacaklılarının, Kayın ve Meşe Ekosistemindeki Mevsimsel Değişimi ve Ölü Örtü Ayrışmasına Etkileri. İstanbul Üniversitesi, Fenbilimleri Enstitüsü (Doktora Tezi), İstanbul.
  • Çepel, N., Özdemir, T., Dündar, M., Neyişçi, T. 1988. Kızılçam (Pinus brutia Ten.) ekosistemlerinde iğne yaprak dökümü ve bu yolla toprağa geri verilen besin maddeleri miktarları. Ormancılık araştırma enstitüsü 194. Enright, N. 1999. Litterfall dynamics in a mixed conifer‐angiosperm forest in northern New Zealand. Journal of Biogeography 26(1): 149-157.
  • Hansen, K., Vesterdal, L., Schmidt, I.K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L.B., Bille-Hansen, J. 2009. Litterfall and nutrient return in five tree species in a common garden experiment. Forest ecology and management 257(10): 2133-2144.
  • ICP-Forests. 2010. Sampling and Analysis of Litterfall. Hamburg, Germany.
  • Irmak, A., Çepel, N. 1968. Belgrad Ormanı’nda seçilen birer kayın, meşe ve karaçam meşcerelerinde yıllık yaprak dökümü miktarı ve bu yolla toprağa verilen besin maddelerinin tespiti üzerine araştırmalar. Journal of the Faculty of Forestry Istanbul University 18(A): 53-76.
  • Irmak, A., Çepel, N. 1974. Bazı karaçam, kayın ve meşe meşcerelerinde ölü örtünün ayrışma ve humuslaşma hızı üzerine araştırmalar. Taş matbaası, İstanbul.
  • Karaöz, M.Ö. 1991. Atatürk arboretumu'ndaki bazı iğne yapraklı plantasyonlarda ölü örtünün kimyasal özellikleri üzerine araştırmalar. Journal of the Faculty of Forestry Istanbul University 41(2): 68-86.
  • Kassnacht, K., Gower, S.T. 1997. Interrelationships among the edaphic and stand characteristics, leaf area index, and aboveground net primary production of upland forest ecosystems in north central Wisconsin. Canadian Journal of Forest Research 27(7): 1058-1067.
  • Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brofas, G., Stamatelos, G. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management 144(1): 113-127.
  • Klinge, H., Rodrigues, W.A. 1968. Litter production in an area of Amazonian terra firme forest. Part I. Litter-fall, organic carbon and total nitrogen contents of litter. Amazoniana 1(4): 287-310.
  • Langenbruch, C., Helfrich, M., Flessa, H. 2012. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil 352(1-2): 389-403.
  • Li, LJ., Zeng, DH., Yu, ZY., Fan, ZP., Yang, D. , Liu, YX. 2011. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments 75(9): 787-792.
  • Liski, J., Palosuo, T., Peltoniemi, M., Sievänen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189(1): 168-182.
  • Liu, C., Westman, C.J., Berg, B., Kutsch, W., Wang, G.Z., Man, R., Ilvesniemi, H. 2004. Variation in litterfall‐climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography 13(2): 105-114.
  • Martin, J.G., Kloeppel, B.D., Schaefer, T.L., Kimbler, D.L., McNulty, S.G. 1998. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Canadian Journal of Forest Research 28(11): 1648-1659.
  • Meentemeyer, V., Box, E.O., Thompson, R. 1982. World patterns and amounts of terrestrial plant litter production. BioScience 32(2): 125-128.
  • Meerts, P. 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science 59(7): 713-722.
  • Meier, I., Leuschner, C., Hertel, D. 2005. Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecology 177(1): 99-112.
  • Mun, HT., Kim, SJ. , Shin, CH. 2007. Litter production and nutrient contents of litterfall in oak and pine forests at Mt. Worak National Park. Journal of Ecology and Environment 30(1): 63-68.
  • Müller, P.E. 1887. Studien über die natürlichen Humusformen und deren Einwirkung auf Vegetation und Boden. Springer, Berlin.
  • Nordén, U. 1994. Leaf litterfall concentrations and fluxes of elements in deciduous tree species. Scandinavian Journal of Forest Research 9(1-4): 9-16.
  • Pandey, R., Sharma, G., Tripathi, S., Singh, A. 2007. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management 240(1): 96-104.
  • Pandey, U., Singh, J. 1981. A quantitative study of the forest floor, litter fall and nutrient return in an oak-conifer forest in himalaya. 2. pattern of litter fall and nutrient return. Acta Oecologica-Oecologia Generalis 2(2): 83-99.
  • Pedersen, L.B., Bille-Hansen, J. 1999. A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecology and Management 114(1): 55-70.
  • Prescott, C.E. 2005. Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management 220(1): 66-74.
  • Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H., Zingg, A. 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science 67(7): 712.
  • Rawat, Y., Singh, J. 1989. Forest floor biomass, litter fall and nutrient return in Central Himalayan oak forests. Vegetatio 82(2): 113-125.
  • Santa Regina, I., Rico, M., Rapp, M., Gallego, H. 1997. Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica. Journal of Vegetation Science 8(5): 651-654.
  • Sargıncı, M. 2014. Batı karadeniz orman ekosistemlerinde ölü örtü dinamiği. (Doktora Tezi). Düzce Üniversitesi, Düzce.
  • Sayer, E.J. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews 81(1): 1-31.
  • Shin, CH., Won, HY., Mun, HT. 2011. Litter production and nutrient input via litterfall in Quercus mongolica forest at Mt. Worak National Park. Journal of Ecology and Environment 34(1): 107-113.
  • Smith, K.T., Shortle, W.C. 1996. Tree biology and dendrochemistry. In: Tree Rings, Environment, and Humanity (eds. J.S., D., D.M., M., T.W., S.), pp. 629-635. Radiocarbon Dept. of Geosciences University University of Arizona, USA, 629-635.
  • Staaf, H., Berg, B. 1981. Plant litter input to soil. Ecological Bulletin 33: 147-167.
  • Staelens, J., Nachtergale, L., Luyssaert, S., Lust, N. 2003. A model of wind-influenced leaf litterfall in a mixed hardwood forest. Canadian Journal of Forest Research 33(2): 201-209.
  • Şengönül, S., Yılmaz, H. 2008. Atatürk Arboretumu Ağaç ve Çalıları. Atatürk Arboretumu Press.
  • Tateno, R., Tokuchi, N., Yamanaka, N., Du, S., Otsuki, K., Shimamura, T., Xue, Z., Wang, S., Hou, Q. 2007. Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecology and Management 241(1): 84-90.
  • Trap, J., Bureau, F., Brethes, A., Jabiol, B., Ponge, JF., Chauvat, M., Decaëns, T., Aubert, M. 2011. Does moder development along a pure beech (Fagus sylvatica L.) chronosequence result from changes in litter production or in decomposition rates? Soil Biology and Biochemistry 43(7): 1490-1497.
  • Ukonmaanaho, L., Merilä, P., Nöjd, P., Nieminen, T.M. 2008. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Environment Research 13(67-91.
  • Vogt, K.A., Grier, C.C., Vogt, D. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research 15: 303-378.
  • WRB. 2006. IUSS Working Group, World reference base for soil resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO Rome.

Litterfall and nutrients return to soil in pure and mixed stands of oak and beech

Year 2017, Volume: 67 Issue: 2, 185 - 200, 01.07.2017
https://doi.org/10.17099/jffiu.301602

Abstract

Litterfall is a significant pathway for the return of nutrients and carbon (C) to the soil in forest ecosystems. It provides long-term maintenance of nutrients in the forest ecosystem. For maintaining healthy forest ecosystems, knowledge about litterfall, energy, and nutrient inputs to the soil biota is important. This study was aimed to determine litterfall and nutrient return to soil in pure and mixed stands of oak (Quercus petraea (Mattuschka) Liebl.) and beech (Fagus orientalis Lipsky) in Atatürk Arboretum, Turkey. Litterfall has been collected over 3 years from 2009 to 2011 at all three sites. Litter traps were used for this purpose, and the trapped samples were sorted into fractions, which included leaves (foliar), branches/twigs, and others (e.g., acorn, flowers, bark, etc.). The concentrations of 14 elements (C, N, P, K, Ca, Na, Mg, Mn, Fe, Al, Zn, Pb, Ni, and Cu) were analyzed. The highest amount of litterfall in the three areas was measured in 2010. The average total litterfall ranged from 3947 to 4578 kg/ha. The average amounts of leaflitter in oak, beech, and oak–beech sites were 86%, 62%, and 75%, respectively. Nutrient concentrations were higher in leaves and the least in branches and twigs. Element concentrations generally showed a descending order as C>Ca>N>Mg>K>Mn>P>Al>Fe>Na>Zn>Cu>Ni> in all the sites. The pure and mixed sites were not significantly different by years, but there was a significant difference in the nutrient concentrations of litterfall fractions between the two sites.


Keywords: Litter, litterfall compartments, macronutrients, micronutrients, oak, beech, mixed stands


Received (Geliş): 31.10.2016 - Revised (Düzeltme): 29.11.2016 -   Accepted (Kabul): 02.01.2017


Cite (Atıf): Cakir, M., Akburak, S. 2017. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University 67(2): 178-193. DOI: 10.17099/jffiu.301602


References

  • Augusto, L., Ranger, J., Binkley, D. , Rothe, A. 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science 59(3): 233-253.
  • Austin, A.T., Vivanco, L. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442(7102): 555-558.
  • Berg, B., McClaugherty, C. 2014. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin Heidelberg.
  • Bernhard-Reversat, F. 1972. Decomposition de la litiere de feuilles en foret ombrophile de basse Cote-d’Ivoire. Oecologia plantarum 7(3): 2782-2797.
  • Bray, J.R., Gorham, E. 1964. Litter production in forests of the world. In: Advances in ecological research, pp. 101-157.
  • Carlisle, A., Brown, A., White, E. 1966. Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak (Quercus petraea) woodland. The Journal of Ecology 65-85.
  • Çakır, M. 2013. Toprak Eklembacaklılarının, Kayın ve Meşe Ekosistemindeki Mevsimsel Değişimi ve Ölü Örtü Ayrışmasına Etkileri. İstanbul Üniversitesi, Fenbilimleri Enstitüsü (Doktora Tezi), İstanbul.
  • Çepel, N., Özdemir, T., Dündar, M., Neyişçi, T. 1988. Kızılçam (Pinus brutia Ten.) ekosistemlerinde iğne yaprak dökümü ve bu yolla toprağa geri verilen besin maddeleri miktarları. Ormancılık araştırma enstitüsü 194. Enright, N. 1999. Litterfall dynamics in a mixed conifer‐angiosperm forest in northern New Zealand. Journal of Biogeography 26(1): 149-157.
  • Hansen, K., Vesterdal, L., Schmidt, I.K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L.B., Bille-Hansen, J. 2009. Litterfall and nutrient return in five tree species in a common garden experiment. Forest ecology and management 257(10): 2133-2144.
  • ICP-Forests. 2010. Sampling and Analysis of Litterfall. Hamburg, Germany.
  • Irmak, A., Çepel, N. 1968. Belgrad Ormanı’nda seçilen birer kayın, meşe ve karaçam meşcerelerinde yıllık yaprak dökümü miktarı ve bu yolla toprağa verilen besin maddelerinin tespiti üzerine araştırmalar. Journal of the Faculty of Forestry Istanbul University 18(A): 53-76.
  • Irmak, A., Çepel, N. 1974. Bazı karaçam, kayın ve meşe meşcerelerinde ölü örtünün ayrışma ve humuslaşma hızı üzerine araştırmalar. Taş matbaası, İstanbul.
  • Karaöz, M.Ö. 1991. Atatürk arboretumu'ndaki bazı iğne yapraklı plantasyonlarda ölü örtünün kimyasal özellikleri üzerine araştırmalar. Journal of the Faculty of Forestry Istanbul University 41(2): 68-86.
  • Kassnacht, K., Gower, S.T. 1997. Interrelationships among the edaphic and stand characteristics, leaf area index, and aboveground net primary production of upland forest ecosystems in north central Wisconsin. Canadian Journal of Forest Research 27(7): 1058-1067.
  • Kavvadias, V.A., Alifragis, D., Tsiontsis, A., Brofas, G., Stamatelos, G. 2001. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management 144(1): 113-127.
  • Klinge, H., Rodrigues, W.A. 1968. Litter production in an area of Amazonian terra firme forest. Part I. Litter-fall, organic carbon and total nitrogen contents of litter. Amazoniana 1(4): 287-310.
  • Langenbruch, C., Helfrich, M., Flessa, H. 2012. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil 352(1-2): 389-403.
  • Li, LJ., Zeng, DH., Yu, ZY., Fan, ZP., Yang, D. , Liu, YX. 2011. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments 75(9): 787-792.
  • Liski, J., Palosuo, T., Peltoniemi, M., Sievänen, R. 2005. Carbon and decomposition model Yasso for forest soils. Ecological Modelling 189(1): 168-182.
  • Liu, C., Westman, C.J., Berg, B., Kutsch, W., Wang, G.Z., Man, R., Ilvesniemi, H. 2004. Variation in litterfall‐climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography 13(2): 105-114.
  • Martin, J.G., Kloeppel, B.D., Schaefer, T.L., Kimbler, D.L., McNulty, S.G. 1998. Aboveground biomass and nitrogen allocation of ten deciduous southern Appalachian tree species. Canadian Journal of Forest Research 28(11): 1648-1659.
  • Meentemeyer, V., Box, E.O., Thompson, R. 1982. World patterns and amounts of terrestrial plant litter production. BioScience 32(2): 125-128.
  • Meerts, P. 2002. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science 59(7): 713-722.
  • Meier, I., Leuschner, C., Hertel, D. 2005. Nutrient return with leaf litter fall in Fagus sylvatica forests across a soil fertility gradient. Plant Ecology 177(1): 99-112.
  • Mun, HT., Kim, SJ. , Shin, CH. 2007. Litter production and nutrient contents of litterfall in oak and pine forests at Mt. Worak National Park. Journal of Ecology and Environment 30(1): 63-68.
  • Müller, P.E. 1887. Studien über die natürlichen Humusformen und deren Einwirkung auf Vegetation und Boden. Springer, Berlin.
  • Nordén, U. 1994. Leaf litterfall concentrations and fluxes of elements in deciduous tree species. Scandinavian Journal of Forest Research 9(1-4): 9-16.
  • Pandey, R., Sharma, G., Tripathi, S., Singh, A. 2007. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management 240(1): 96-104.
  • Pandey, U., Singh, J. 1981. A quantitative study of the forest floor, litter fall and nutrient return in an oak-conifer forest in himalaya. 2. pattern of litter fall and nutrient return. Acta Oecologica-Oecologia Generalis 2(2): 83-99.
  • Pedersen, L.B., Bille-Hansen, J. 1999. A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecology and Management 114(1): 55-70.
  • Prescott, C.E. 2005. Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management 220(1): 66-74.
  • Pretzsch, H., Block, J., Dieler, J., Dong, P.H., Kohnle, U., Nagel, J., Spellmann, H., Zingg, A. 2010. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Annals of Forest Science 67(7): 712.
  • Rawat, Y., Singh, J. 1989. Forest floor biomass, litter fall and nutrient return in Central Himalayan oak forests. Vegetatio 82(2): 113-125.
  • Santa Regina, I., Rico, M., Rapp, M., Gallego, H. 1997. Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica. Journal of Vegetation Science 8(5): 651-654.
  • Sargıncı, M. 2014. Batı karadeniz orman ekosistemlerinde ölü örtü dinamiği. (Doktora Tezi). Düzce Üniversitesi, Düzce.
  • Sayer, E.J. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews 81(1): 1-31.
  • Shin, CH., Won, HY., Mun, HT. 2011. Litter production and nutrient input via litterfall in Quercus mongolica forest at Mt. Worak National Park. Journal of Ecology and Environment 34(1): 107-113.
  • Smith, K.T., Shortle, W.C. 1996. Tree biology and dendrochemistry. In: Tree Rings, Environment, and Humanity (eds. J.S., D., D.M., M., T.W., S.), pp. 629-635. Radiocarbon Dept. of Geosciences University University of Arizona, USA, 629-635.
  • Staaf, H., Berg, B. 1981. Plant litter input to soil. Ecological Bulletin 33: 147-167.
  • Staelens, J., Nachtergale, L., Luyssaert, S., Lust, N. 2003. A model of wind-influenced leaf litterfall in a mixed hardwood forest. Canadian Journal of Forest Research 33(2): 201-209.
  • Şengönül, S., Yılmaz, H. 2008. Atatürk Arboretumu Ağaç ve Çalıları. Atatürk Arboretumu Press.
  • Tateno, R., Tokuchi, N., Yamanaka, N., Du, S., Otsuki, K., Shimamura, T., Xue, Z., Wang, S., Hou, Q. 2007. Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecology and Management 241(1): 84-90.
  • Trap, J., Bureau, F., Brethes, A., Jabiol, B., Ponge, JF., Chauvat, M., Decaëns, T., Aubert, M. 2011. Does moder development along a pure beech (Fagus sylvatica L.) chronosequence result from changes in litter production or in decomposition rates? Soil Biology and Biochemistry 43(7): 1490-1497.
  • Ukonmaanaho, L., Merilä, P., Nöjd, P., Nieminen, T.M. 2008. Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Environment Research 13(67-91.
  • Vogt, K.A., Grier, C.C., Vogt, D. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advances in Ecological Research 15: 303-378.
  • WRB. 2006. IUSS Working Group, World reference base for soil resources 2006. 2nd edition. World Soil Resources Reports No. 103. FAO Rome.
There are 46 citations in total.

Details

Journal Section Research Articles (Araştırma Makalesi)
Authors

Meriç Çakır

Serdar Akburak

Publication Date July 1, 2017
Published in Issue Year 2017 Volume: 67 Issue: 2

Cite

APA Çakır, M., & Akburak, S. (2017). Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University, 67(2), 185-200. https://doi.org/10.17099/jffiu.301602
AMA Çakır M, Akburak S. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. J FAC FOR ISTANBUL U. July 2017;67(2):185-200. doi:10.17099/jffiu.301602
Chicago Çakır, Meriç, and Serdar Akburak. “Litterfall and Nutrients Return to Soil in Pure and Mixed Stands of Oak and Beech”. Journal of the Faculty of Forestry Istanbul University 67, no. 2 (July 2017): 185-200. https://doi.org/10.17099/jffiu.301602.
EndNote Çakır M, Akburak S (July 1, 2017) Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. Journal of the Faculty of Forestry Istanbul University 67 2 185–200.
IEEE M. Çakır and S. Akburak, “Litterfall and nutrients return to soil in pure and mixed stands of oak and beech”, J FAC FOR ISTANBUL U, vol. 67, no. 2, pp. 185–200, 2017, doi: 10.17099/jffiu.301602.
ISNAD Çakır, Meriç - Akburak, Serdar. “Litterfall and Nutrients Return to Soil in Pure and Mixed Stands of Oak and Beech”. Journal of the Faculty of Forestry Istanbul University 67/2 (July 2017), 185-200. https://doi.org/10.17099/jffiu.301602.
JAMA Çakır M, Akburak S. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. J FAC FOR ISTANBUL U. 2017;67:185–200.
MLA Çakır, Meriç and Serdar Akburak. “Litterfall and Nutrients Return to Soil in Pure and Mixed Stands of Oak and Beech”. Journal of the Faculty of Forestry Istanbul University, vol. 67, no. 2, 2017, pp. 185-00, doi:10.17099/jffiu.301602.
Vancouver Çakır M, Akburak S. Litterfall and nutrients return to soil in pure and mixed stands of oak and beech. J FAC FOR ISTANBUL U. 2017;67(2):185-200.