Research Article
BibTex RIS Cite

BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION

Year 2021, , 238 - 252, 31.05.2021
https://doi.org/10.33483/jfpau.882831

Abstract

Objective: In this study, the possible central antinociceptive activity of beta-sitosterol is investigated along with its association of stimulation of opioidergic, serotonergic, adrenergic, and cholinergic receptors to mice central analgesia because of the beta-sitosterol administration.
Material and Method: The beta-sitosterol was administrated to mice in various doses, such as 5, 10 and 20 mg/kg. Then, the mice analyzed via hot-plate and tail-flick assay to investigate the possible antinociceptive effects of beta-sitosterol. Additionally, in order to associate the mechanism of action mechanism, 20 mg/kg of beta-sitosterol was intraperitoneally administered to the animal which were previously pre-treated with opioid antagonist naloxone (5 mg/kg), serotonin 5-HT2A/2C receptor antagonist ketanserin (1 mg/kg), serotonin 5-HT3 receptor antagonist – ondansetron (1 mg/kg), α2-adrenoceptor antagonist yohimbine (1 mg/kg) and muscarinic antagonist atropine (5 mg/kg), as well as nicotinic antagonist mecamylamine (1 mg/kg).
Result and Discussion: The antinociceptive effect of beta-sitosterol was confirmed as dose-dependent for 5, 10, and 20 mg/kg doses in tail-flick and hot-plate tests. It can be concluded that beta-sitosterol promotes central antinociception effects associated with the spinal and supraspinal mediated cholinergic and opioidergic modulation.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Abdolrazaghnejad, A., Banaie, M., Tavakoli, N., Safdari, M., Rajabpour-Sanati, A. (2018). Pain management in the emergency department: a review article on options and methods. Adv J Emerg Med., 2(4), e45.
  • Nicholson, B. (2006). Differential diagnosis: nociceptive and neuropathic pain. Am J Manag Care, 12(9), 256-262.
  • Mitsi, V., Zachariou, V. (2016). Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience, 338, 81–92.
  • Falk, S., Dickenson, A.H. (2014). Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol, 32(16), 1647–1654.
  • Armstrong, S., Herr, M. (2020). Physiology, Nociception. In: StatPearls. Treasure Island (FL): StatPearls.
  • Prieto Rodríguez, J.A., Patiño Ladino, O.J., Lesmes, L., Lozano, J.M., Cuca Suárez, L.E. (2011). Phytochemical study of uncaria guianensis leaves and antibacterial activity evaluation. Acta Amazonica, 41(2), 303–310.
  • Yepes-Pérez, A.F., Herrera-Calderon, O., Sánchez-Aparicio, J.-E., Tiessler-Sala, L., Maréchal, J.-D., Cardona-G, W. (2020). Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling. Evid Based Complement Alternat Med., 2020, 4932572.
  • Vissers, M.N., Zock, P.L., Meijer, G.W., Katan, M.B. (2000). Effect of plant sterols from rice bran oil and triterpene alcohols from sheanut oil on serum lipoprotein concentrations in humans. Am J Clin Nutr., 72(6), 1510–1515.
  • Elkeilsh, A., Awad, Y.M., Soliman, M.H., Abu-Elsaoud, A., Abdelhamid, M.T., El-Metwally, I.M. (2019). Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. J Plant Res., 132(6), 881–901.
  • Delgado-Zammarreno, M.M., Bustamante-Rangel, M., Martinez-Pelarda, D., Carabias-Martinez, R. (2009). Analysis of beta-sitosterol in seeds and nuts using pressurized liquid extraction and liquid chromatography. Anal Sci, 25(6), 765–768.
  • Kim, S.-J. (2017). The ameliorative effect of β-sitosterol on DNCB-induced atopic dermatitis in mice. Biomed Sci Letters, 23(4), 303–309.
  • Saeidnia, S., Manayi, A., Gohari, A.R., Abdollahi, M. (2014). The story of beta-sitosterol- a review. EJMP, 4(5), 590–609.
  • Heitzman, M., Neto, C.C., Winiarz, E., Vaisberg, A.J., Hammond, G.B. (2005). Ethnobotany, phytochemistry and pharmacology of (Rubiaceae). Phytochemistry, 66(1), 5–29.
  • Tapiero, H., Townsend, D.M., Tew, K.D. (2003). Phytosterols in the prevention of human pathologies. Biomed Pharmacother., 57(8), 321–325.
  • Ododo, M.M., Choudhury, M.K., Dekebo, A.H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springerplus, 5(1), 1210.
  • Feng, S., Dai, Z., Liu, A.B., Huang, J., Narsipur, N., Guo, G., Guo, G., Kong, B., Reuhl, K., Lu, W., Luo, Z., Yang, C.S. (2018). Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids, 1863(10), 1274–1284.
  • Liu, R., Hao, D., Xu, W., Li, J., Li, X., Shen, D., Sheng, K., Zhao, L., Xu, W., Gao, Z., Zhao, X., Liu, Q., Zhang, Y. (2019). β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm Biol., 57(1), 161–168.
  • Paniagua-Pérez, R., Flores-Mondragón, G., Reyes-Legorreta, C., Herrera-López, B., Cervantes-Hernández, I., Madrigal-Santillán, O., Morales-González, J.A.,Álvarez-González, I., Madrigal-Bujaidar, E. (2016). Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assay. Afr J Tradit Complement Altern Med., 14(1), 123–130.
  • Dighe, S. B., Kuchekar, B. S., Wankhede, S. B. (2019). Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata. International Journal of Pharmacological Research, 09(05), 109–113.
  • Arslan, R., Bektas, N. (2015). Evaluation of the centrally-acting mechanisms of some non- steroidal anti-inflammatory drugs. American Journal of Pharmacy & Health Research, 3(6), 191–202.
  • Arslan, R., Aydin, S., Nemutlu Samur, D., Bektas, N. (2018). The possible mechanisms of protocatechuic acid-induced central analgesia. Saudi Pharm J., 26(4), 541–545.
  • Majumder, R., Adhikari, L., Dhara, M., Sahu, J. (2020). Evaluation of anti-inflammatory, analgesic and TNF-α inhibition (upon RAW 264.7 cell line) followed by the selection of extract (leaf and stem) with respect to potency to introduce anti-oral-ulcer model obtained from Olax psittacorum (Lam.) Vahl in addition to GC-MS illustration. J Ethnopharmacol., 263, 113146.
  • De Caro, C., Raucci, F., Saviano, A., Cristiano, C., Casillo, G. M., Di Lorenzo, R., Sacchi, A., Laneri, S., Dini, I., De Vita, S., Chini, M. G., Bifulco, G., Calignano, A., Maione, F., Mascolo, N. (2020). Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomed Pharmacother., 126, 110042.
  • Devaraj, E., Roy, A., Royapuram Veeraragavan, G., Magesh, A., Varikalam Sleeba, A., Arivarasu, L., Marimuthu Parasuraman, B. (2020). β-Sitosterol attenuates carbon tetrachloride–induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol., 393(6), 1067–1075.
  • Babu, S., Krishnan, M., Rajagopal, P., Periyasamy, V., Veeraraghavan, V., Govindan, R., Jayaraman, S. (2020). Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur J Pharmacol., 873, 173004.
  • Afify, E. A., Alkreathy, H. M., Ali, A.S., Alfaifi, H.A., Khan, L.M. (2017). Characterization of the antinociceptive mechanisms of khat extract (Catha edulis) in mice. Front Neurol., 8, 69.
  • Wang, Y., Su, D. M., Wang, R.H., Liu, Y., Wang, H. (2005). Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience, 132(1), 49–56.
  • Scapinello, J., Müller, L. G., Schindler, M., Anzollin, G. S., Siebel, A. M., Boligon, A. A., Niero, R., Saraiva, T., Maus, N. P., Betti, A. H., Oliveira, J. V., Magro, J. D., & de Oliveira, D. (2019). Antinociceptive and anti-inflammatory activities of Philodendron bipinnatifidum Schott ex Endl (Araceae). J Ethnopharmacol., 236, 21–30.
  • Jang, Y., Kim, M., Hwang, S. W. (2020). Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation, 17(1), 30.
  • Das, N., Bhattacharya, A., Kumar Mandal, S., Debnath, U., Dinda, B., Mandal, S. C., Kumar Sinhamahapatra, P., Kumar, A., Dutta Choudhury, M., Maiti, S., & Palit, P. (2018). Ichnocarpus frutescens (L.) R. Br. root derived phyto-steroids defends inflammation and algesia by pulling down the pro-inflammatory and nociceptive pain mediators: An in-vitro and in-vivo appraisal. Steroids, 139, 18–27.
  • Nirmal, S. A., Pal, S. C., Mandal, S. C., Patil, A. N. (2012). Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthes arbortristis leaves. Inflammopharmacology, 20(4), 219–224.
  • Tamaddonfard, E., Erfanparast, A., Abbas Farshid, A., Delkhosh-Kasmaie, F. (2017). Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats. Eur J Pharmacol., 815, 399–404.
  • Zhao, X., Ye, J., Sun, Q., Xiong, Y., Li, R., Jiang, Y. (2011). Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice. Neuropharmacology, 60(2–3), 446–452.
  • Pinheiro, M.M.G., Boylan, F., Fernandes, P.D. (2012). Antinociceptive effect of the Orbignya speciosa Mart. (Babassu) leaves: Evidence for the involvement of apigenin. Life Sci., 91(9–10), 293–300.
  • Guginski, G., Luiz, A.P., Silva, M.D., Massaro, M., Martins, D.F., Chaves, J., Mattos, R.W., Silveira, D., Ferreira, V.M.M. Calixto, J. B., Santos, A.R. (2009). Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol Biochem Behav., 93(1), 10–16.
  • Li, W., Cai, J., Wang, B.H., Huang, L., Fan, J., Wang, Y. (2018). Antinociceptive effects of novel epibatidine analogs through activation of α4β2 nicotinic receptors. Sci China Life Sci., 61(6), 688–695.
  • Atzori, M., Cuevas-Olguin, R., Esquivel-Rendon, E., Garcia-Oscos, F., Salgado-Delgado, R. C., Saderi, N., Miranda-Morales, M., Treviño, M., Pineda, J. C., Salgado, H. (2016). Locus ceruleus norepinephrine release: A central regulator of cns spatio-temporal activation? Front Synaptic Neurosci, 8, 25.
  • Mwobobia, R.M., Kanui, T.I., Abelson, K.S.P. (2020). Investigation of noradrenergic receptor system in anti-nociception using formalin test in the naked mole rat (Heterocephalus glaber). Heliyon, 6(10), e05216.
  • Cortes-Altamirano, J. L., Olmos-Hernandez, A., Jaime, H.B., Carrillo-Mora, P., Bandala, C., Reyes-Long, S., Alfaro-Rodríguez, A. (2018). Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr Neuropharmacol., 16(2), 210–221.
  • Anversa, R.G., Sousa, F.S.S., Birmann, P.T., Lima, D.B., Lenardão, E.J., Bruning, C.A., Savegnago, L. (2018). Antinociceptive and anti-inflammatory effects of 1,2-bis-(4 methoxyphenylselanyl) styrene in mice: involvement of the serotonergic system. J Pharm Pharmacol., 70(7), 901–909.

BETA-SİTOSTEROL VE ANTİNOSİSEPTİF ETKİ MEKANİZMASI

Year 2021, , 238 - 252, 31.05.2021
https://doi.org/10.33483/jfpau.882831

Abstract

Amaç: Bu çalışmada, farelerde beta-sitosterol uygulamasına bağlı santral analjezide opioiderjik, serotonerjik, adrenerjik ve kolinerjik reseptörleri ile ilişkili olası antinosiseptif aktivitesi araştırılmıştır.
Gereç ve Yöntem: Beta-sitosterol, farelere 5, 10 ve 20 mg/kg dozlarında uygulandı. Daha sonra, fareler beta-sitosterolün olası antinosiseptif etkilerini araştırmak için tail-flick ve hot-plate testleri ile analiz edildi. Ek olarak, etki mekanizmasını değerlendirmek için, farelere, beta-sitosterol (20 mg/kg, intraperitonel) uygulamasından önce opioid antagonisti nalokson (5 mg/kg), serotonin 5-HT3 reseptör antagonisti ondansetron (1 mg/kg), serotonin 5-HT2A/2C reseptör antagonisti ketanserin (1 mg/kg), α2-adrenoseptör antagonisti yohimbin (1 mg/kg) ve muskarinik antagonist atropin (5 mg/kg) ve ayrıca nikotinik antagonisti mekamilamin (1 mg/kg) uygulandı.
Sonuç ve Tartışma: Beta-sitosterolün doza-bağlı antinosiseptif etkisi, tail-flick ve hot-plate testlerinde 5, 10 ve 20 mg/kg dozlarında tespit edilmiştir. Beta-sitosterolün, spinal ve supraspinal aracılı kolinerjik ve opioiderjik modülasyon ile ilişkili merkezi antinosisepsiyon etkilerini teşvik ettiği sonucuna varılabilir.

Project Number

-

References

  • Abdolrazaghnejad, A., Banaie, M., Tavakoli, N., Safdari, M., Rajabpour-Sanati, A. (2018). Pain management in the emergency department: a review article on options and methods. Adv J Emerg Med., 2(4), e45.
  • Nicholson, B. (2006). Differential diagnosis: nociceptive and neuropathic pain. Am J Manag Care, 12(9), 256-262.
  • Mitsi, V., Zachariou, V. (2016). Modulation of pain, nociception, and analgesia by the brain reward center. Neuroscience, 338, 81–92.
  • Falk, S., Dickenson, A.H. (2014). Pain and nociception: mechanisms of cancer-induced bone pain. J Clin Oncol, 32(16), 1647–1654.
  • Armstrong, S., Herr, M. (2020). Physiology, Nociception. In: StatPearls. Treasure Island (FL): StatPearls.
  • Prieto Rodríguez, J.A., Patiño Ladino, O.J., Lesmes, L., Lozano, J.M., Cuca Suárez, L.E. (2011). Phytochemical study of uncaria guianensis leaves and antibacterial activity evaluation. Acta Amazonica, 41(2), 303–310.
  • Yepes-Pérez, A.F., Herrera-Calderon, O., Sánchez-Aparicio, J.-E., Tiessler-Sala, L., Maréchal, J.-D., Cardona-G, W. (2020). Investigating potential inhibitory effect of uncaria tomentosa (cat’s claw) against the main protease 3CLpro of SARS-CoV-2 by molecular modeling. Evid Based Complement Alternat Med., 2020, 4932572.
  • Vissers, M.N., Zock, P.L., Meijer, G.W., Katan, M.B. (2000). Effect of plant sterols from rice bran oil and triterpene alcohols from sheanut oil on serum lipoprotein concentrations in humans. Am J Clin Nutr., 72(6), 1510–1515.
  • Elkeilsh, A., Awad, Y.M., Soliman, M.H., Abu-Elsaoud, A., Abdelhamid, M.T., El-Metwally, I.M. (2019). Exogenous application of β-sitosterol mediated growth and yield improvement in water-stressed wheat (Triticum aestivum) involves up-regulated antioxidant system. J Plant Res., 132(6), 881–901.
  • Delgado-Zammarreno, M.M., Bustamante-Rangel, M., Martinez-Pelarda, D., Carabias-Martinez, R. (2009). Analysis of beta-sitosterol in seeds and nuts using pressurized liquid extraction and liquid chromatography. Anal Sci, 25(6), 765–768.
  • Kim, S.-J. (2017). The ameliorative effect of β-sitosterol on DNCB-induced atopic dermatitis in mice. Biomed Sci Letters, 23(4), 303–309.
  • Saeidnia, S., Manayi, A., Gohari, A.R., Abdollahi, M. (2014). The story of beta-sitosterol- a review. EJMP, 4(5), 590–609.
  • Heitzman, M., Neto, C.C., Winiarz, E., Vaisberg, A.J., Hammond, G.B. (2005). Ethnobotany, phytochemistry and pharmacology of (Rubiaceae). Phytochemistry, 66(1), 5–29.
  • Tapiero, H., Townsend, D.M., Tew, K.D. (2003). Phytosterols in the prevention of human pathologies. Biomed Pharmacother., 57(8), 321–325.
  • Ododo, M.M., Choudhury, M.K., Dekebo, A.H. (2016). Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora. Springerplus, 5(1), 1210.
  • Feng, S., Dai, Z., Liu, A.B., Huang, J., Narsipur, N., Guo, G., Guo, G., Kong, B., Reuhl, K., Lu, W., Luo, Z., Yang, C.S. (2018). Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids, 1863(10), 1274–1284.
  • Liu, R., Hao, D., Xu, W., Li, J., Li, X., Shen, D., Sheng, K., Zhao, L., Xu, W., Gao, Z., Zhao, X., Liu, Q., Zhang, Y. (2019). β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm Biol., 57(1), 161–168.
  • Paniagua-Pérez, R., Flores-Mondragón, G., Reyes-Legorreta, C., Herrera-López, B., Cervantes-Hernández, I., Madrigal-Santillán, O., Morales-González, J.A.,Álvarez-González, I., Madrigal-Bujaidar, E. (2016). Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assay. Afr J Tradit Complement Altern Med., 14(1), 123–130.
  • Dighe, S. B., Kuchekar, B. S., Wankhede, S. B. (2019). Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata. International Journal of Pharmacological Research, 09(05), 109–113.
  • Arslan, R., Bektas, N. (2015). Evaluation of the centrally-acting mechanisms of some non- steroidal anti-inflammatory drugs. American Journal of Pharmacy & Health Research, 3(6), 191–202.
  • Arslan, R., Aydin, S., Nemutlu Samur, D., Bektas, N. (2018). The possible mechanisms of protocatechuic acid-induced central analgesia. Saudi Pharm J., 26(4), 541–545.
  • Majumder, R., Adhikari, L., Dhara, M., Sahu, J. (2020). Evaluation of anti-inflammatory, analgesic and TNF-α inhibition (upon RAW 264.7 cell line) followed by the selection of extract (leaf and stem) with respect to potency to introduce anti-oral-ulcer model obtained from Olax psittacorum (Lam.) Vahl in addition to GC-MS illustration. J Ethnopharmacol., 263, 113146.
  • De Caro, C., Raucci, F., Saviano, A., Cristiano, C., Casillo, G. M., Di Lorenzo, R., Sacchi, A., Laneri, S., Dini, I., De Vita, S., Chini, M. G., Bifulco, G., Calignano, A., Maione, F., Mascolo, N. (2020). Pharmacological and molecular docking assessment of cryptotanshinone as natural-derived analgesic compound. Biomed Pharmacother., 126, 110042.
  • Devaraj, E., Roy, A., Royapuram Veeraragavan, G., Magesh, A., Varikalam Sleeba, A., Arivarasu, L., Marimuthu Parasuraman, B. (2020). β-Sitosterol attenuates carbon tetrachloride–induced oxidative stress and chronic liver injury in rats. Naunyn Schmiedebergs Arch Pharmacol., 393(6), 1067–1075.
  • Babu, S., Krishnan, M., Rajagopal, P., Periyasamy, V., Veeraraghavan, V., Govindan, R., Jayaraman, S. (2020). Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur J Pharmacol., 873, 173004.
  • Afify, E. A., Alkreathy, H. M., Ali, A.S., Alfaifi, H.A., Khan, L.M. (2017). Characterization of the antinociceptive mechanisms of khat extract (Catha edulis) in mice. Front Neurol., 8, 69.
  • Wang, Y., Su, D. M., Wang, R.H., Liu, Y., Wang, H. (2005). Antinociceptive effects of choline against acute and inflammatory pain. Neuroscience, 132(1), 49–56.
  • Scapinello, J., Müller, L. G., Schindler, M., Anzollin, G. S., Siebel, A. M., Boligon, A. A., Niero, R., Saraiva, T., Maus, N. P., Betti, A. H., Oliveira, J. V., Magro, J. D., & de Oliveira, D. (2019). Antinociceptive and anti-inflammatory activities of Philodendron bipinnatifidum Schott ex Endl (Araceae). J Ethnopharmacol., 236, 21–30.
  • Jang, Y., Kim, M., Hwang, S. W. (2020). Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation, 17(1), 30.
  • Das, N., Bhattacharya, A., Kumar Mandal, S., Debnath, U., Dinda, B., Mandal, S. C., Kumar Sinhamahapatra, P., Kumar, A., Dutta Choudhury, M., Maiti, S., & Palit, P. (2018). Ichnocarpus frutescens (L.) R. Br. root derived phyto-steroids defends inflammation and algesia by pulling down the pro-inflammatory and nociceptive pain mediators: An in-vitro and in-vivo appraisal. Steroids, 139, 18–27.
  • Nirmal, S. A., Pal, S. C., Mandal, S. C., Patil, A. N. (2012). Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthes arbortristis leaves. Inflammopharmacology, 20(4), 219–224.
  • Tamaddonfard, E., Erfanparast, A., Abbas Farshid, A., Delkhosh-Kasmaie, F. (2017). Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats. Eur J Pharmacol., 815, 399–404.
  • Zhao, X., Ye, J., Sun, Q., Xiong, Y., Li, R., Jiang, Y. (2011). Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice. Neuropharmacology, 60(2–3), 446–452.
  • Pinheiro, M.M.G., Boylan, F., Fernandes, P.D. (2012). Antinociceptive effect of the Orbignya speciosa Mart. (Babassu) leaves: Evidence for the involvement of apigenin. Life Sci., 91(9–10), 293–300.
  • Guginski, G., Luiz, A.P., Silva, M.D., Massaro, M., Martins, D.F., Chaves, J., Mattos, R.W., Silveira, D., Ferreira, V.M.M. Calixto, J. B., Santos, A.R. (2009). Mechanisms involved in the antinociception caused by ethanolic extract obtained from the leaves of Melissa officinalis (lemon balm) in mice. Pharmacol Biochem Behav., 93(1), 10–16.
  • Li, W., Cai, J., Wang, B.H., Huang, L., Fan, J., Wang, Y. (2018). Antinociceptive effects of novel epibatidine analogs through activation of α4β2 nicotinic receptors. Sci China Life Sci., 61(6), 688–695.
  • Atzori, M., Cuevas-Olguin, R., Esquivel-Rendon, E., Garcia-Oscos, F., Salgado-Delgado, R. C., Saderi, N., Miranda-Morales, M., Treviño, M., Pineda, J. C., Salgado, H. (2016). Locus ceruleus norepinephrine release: A central regulator of cns spatio-temporal activation? Front Synaptic Neurosci, 8, 25.
  • Mwobobia, R.M., Kanui, T.I., Abelson, K.S.P. (2020). Investigation of noradrenergic receptor system in anti-nociception using formalin test in the naked mole rat (Heterocephalus glaber). Heliyon, 6(10), e05216.
  • Cortes-Altamirano, J. L., Olmos-Hernandez, A., Jaime, H.B., Carrillo-Mora, P., Bandala, C., Reyes-Long, S., Alfaro-Rodríguez, A. (2018). Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors and their role in the modulation of pain response in the central nervous system. Curr Neuropharmacol., 16(2), 210–221.
  • Anversa, R.G., Sousa, F.S.S., Birmann, P.T., Lima, D.B., Lenardão, E.J., Bruning, C.A., Savegnago, L. (2018). Antinociceptive and anti-inflammatory effects of 1,2-bis-(4 methoxyphenylselanyl) styrene in mice: involvement of the serotonergic system. J Pharm Pharmacol., 70(7), 901–909.
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Article
Authors

Ayşe Arzu Şakul 0000-0002-9354-0000

Mehmet Evren Okur 0000-0001-7706-6452

Project Number -
Publication Date May 31, 2021
Submission Date February 20, 2021
Acceptance Date March 10, 2021
Published in Issue Year 2021

Cite

APA Şakul, A. A., & Okur, M. E. (2021). BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION. Journal of Faculty of Pharmacy of Ankara University, 45(2), 238-252. https://doi.org/10.33483/jfpau.882831
AMA Şakul AA, Okur ME. BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION. Ankara Ecz. Fak. Derg. May 2021;45(2):238-252. doi:10.33483/jfpau.882831
Chicago Şakul, Ayşe Arzu, and Mehmet Evren Okur. “BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION”. Journal of Faculty of Pharmacy of Ankara University 45, no. 2 (May 2021): 238-52. https://doi.org/10.33483/jfpau.882831.
EndNote Şakul AA, Okur ME (May 1, 2021) BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION. Journal of Faculty of Pharmacy of Ankara University 45 2 238–252.
IEEE A. A. Şakul and M. E. Okur, “BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION”, Ankara Ecz. Fak. Derg., vol. 45, no. 2, pp. 238–252, 2021, doi: 10.33483/jfpau.882831.
ISNAD Şakul, Ayşe Arzu - Okur, Mehmet Evren. “BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION”. Journal of Faculty of Pharmacy of Ankara University 45/2 (May 2021), 238-252. https://doi.org/10.33483/jfpau.882831.
JAMA Şakul AA, Okur ME. BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION. Ankara Ecz. Fak. Derg. 2021;45:238–252.
MLA Şakul, Ayşe Arzu and Mehmet Evren Okur. “BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION”. Journal of Faculty of Pharmacy of Ankara University, vol. 45, no. 2, 2021, pp. 238-52, doi:10.33483/jfpau.882831.
Vancouver Şakul AA, Okur ME. BETA-SITOSTEROL AND ITS ANTINOCICEPTIVE MECHANISM ACTION. Ankara Ecz. Fak. Derg. 2021;45(2):238-52.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.