Preterm erken membran rüptürü olan izole oligohidramniyoz olgularında fetal ağırlığın tahmininde manuel ve otomatik ölçümlerin karşılaştırılması
Year 2020,
Volume: 17 Issue: 4, 524 - 528, 31.12.2020
Orhan Altınboğa
,
Hasan Eroglu
,
Seyit Ahmet Erol
,
Betül Yakıştıran
,
Emre Başer
,
Aykan Yücel
Abstract
Amaç
Üçüncü trimesterde tespit edilen izole oligohidramniyoz olgularında alternatif ölçüm yöntemlerinin gerçek (aktüel) doğum ağırlığını tahmin etmedeki etkilerinin değerlendirilmesi amaçlandı.
Gereç ve Yöntemler
Prospektif kohort çalışmamızda, 336/7 ve 366/7 gebelik haftaları arasında 78 gebe değerlendirildi. Rutin biyometrik ölçümler iki boyutlu (2D) ultrasonografi ile elde edildi. Manuel ölçümlerin yapıldığı bölümlere kaliperler yerleştirildi. Daha sonra aynı görüntü üzerinde ultrasonografi cihazı ile otomatik ölçüm alındı. Fetal ağırlık Hadlock II formülü kullanılarak hesaplandı.
Bulgular
Ortalama manuel ve otomatik tahmini fetal ağırlıklar (TFA) ve gerçek doğum ağırlıkları (aktüel DA) sırasıyla 2281,1 ± 326, 2371,5 ± 324 ve 2417,2 ± 353 idi. Manuel TFA, istatistiksel olarak anlamlı düzeyde hem gerçek (aktüel) DA'dan hem de otomatik TFA'dan daha düşüktü (sırasıyla p = 0.002, p = 0.001). Korelasyon analizinde, gerçek DA ile hem manuel TFA hem de otomatik TFA arasında anlamlı bir pozitif korelasyon bulundu (p <0,001). Bununla birlikte, bu ilişki manuel TFA ile karşılaştırıldığında otomatik TFA'da daha yüksekti (r = 0.858 vs r = 0.734).
Sonuç
Obstetrik uygulamada TFA'yı doğru tahmin edebilmek önem arz eder. Çalışmamızda, otomatik olarak elde edilen TFA'nın manuel olarak elde edilen TFA ile karşılaştırıldığında gerçek DA'ya daha yakın olduğunu gösterdik. Son zamanlarda teknolojinin en önemli konularından biri haline gelen yapay zeka, yakın gelecekte ultrasonografi cihazlarında kullanıldığında fetal ağırlığın tahmin edilmesinde bize daha fazla yardım sağlayabilir.
Supporting Institution
Yoktur
References
- 1. Das UG, Sysyn GD. Abnormal fetal growth: intrauterine growth retardation, small for gestational age, large for gestational age. Pediatr Clin North Am. 2004;51(3):639-54, viii.
- 2. Gynecologists ACoOa. Shoulder Asocial. COG Practice Pattern 2002;40.
- 3. Huber C, Zdanowicz JA, Mueller M, Surbek D. Factors influencing the accuracy of fetal weight estimation with a focus on preterm birth at the limit of viability: a systematic literature review. Fetal Diagn Ther. 2014;36(1):1-8.
- 4. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am J Obstet Gynecol. 1985;151(3):333-7.
- 5. Rutherford SE, Smith CV, Phelan JP, Kawakami K, Ahn MO. Four-quadrant assessment of amniotic fluid volume. Interobserver and intraobserver variation. J Reprod Med. 1987;32(8):587-9.
- 6. Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol. 2005;25(1):80-9.
- 7. Barel O, Maymon R, Vaknin Z, Tovbin J, Smorgick N. Sonographic fetal weight estimation - is there more to it than just fetal measurements? Prenat Diagn. 2014;34(1):50-5.
- 8. Ott WJ, Doyle S, Flamm S. Accurate ultrasonic estimation of fetal weight. Am J Perinatol. 1985;2(3):178-82.
- 9. Melamed N, Yogev Y, Ben-Haroush A, Meizner I, Mashiach R, Glezerman M. Does use of a sex-specific model improve the accuracy of sonographic weight estimation? Ultrasound Obstet Gynecol. 2012;39(5):549-57.
- 10. Blann DW, Prien SD. Estimation of fetal weight before and after amniotomy in the laboring gravid woman. Am J Obstet Gynecol. 2000;182(5):1117-20.
- 11. Farrell T, Holmes R, Stone P. The effect of body mass index on three methods of fetal weight estimation. BJOG. 2002;109(6):651-7.
- 12. Blitz MJ, Rochelson B, Stork LB, Augustine S, Greenberg M, Sison CP, Vohra N. Maternal Body Mass Index and Amniotic Fluid Index in Late Gestation. J Ultrasound Med. 2018;37(3):561-8.
- 13. Ashwal E, Hiersch L, Melamed N, Bardin R, Wiznitzer A, Yogev Y. Does the level of amniotic fluid have an effect on the accuracy of sonographic estimated fetal weight at term? J Matern Fetal Neonatal Med. 2015;28(6):638-42.
- 14. Eroglu H, Orgul G, Avci E, Altinboga A, Karakoc G, Yucel A. Comparison of automated vs. manual measurement to estimate fetal weight in isolated polyhydramnios. J Perinat Med. 2019;47(6):592-7.
- 15. Predanic M, Cho A, Ingrid F, Pellettieri J. Ultrasonographic estimation of fetal weight: acquiring accuracy in residency. J Ultrasound Med. 2002;21(5):495-500.
- 16. Townsend RR, Filly RA, Callen PW, Laros RK. Factors affecting prenatal sonographic estimation of weight in extremely low birthweight infants. J Ultrasound Med. 1988;7(4):183-7.
- 17. Liao S, Wang Y, Xiao S, Deng X, Fang B, Yang F. A New Model for Birth Weight Prediction Using 2- and 3-Dimensional Ultrasonography by Principal Component Analysis: A Chinese Population Study. J Ultrasound Med. 2018.
- 18. Catov JM, Lee M, Roberts JM, Xu J, Simhan HN. Race Disparities and Decreasing Birth Weight: Are All Babies Getting Smaller? Am J Epidemiol. 2016;183(1):15-23.
- 19. Oshiro CE, Novotny R, Grove JS, Hurwitz EL. Race/Ethnic Differences in Birth Size, Infant Growth, and Body Mass Index at Age Five Years in Children in Hawaii. Child Obes. 2015;11(6):683-90.
- 20. O'Connor C, O'Higgins A, Doolan A, Segurado R, Stuart B, Turner MJ, Kennelly MM. Birth weight and neonatal adiposity prediction using fractional limb volume obtained with 3D ultrasound. Fetal Diagn Ther. 2014;36(1):44-8.
- 21. Moore GS, Post AL, West NA, Hart JE, Lynch AM. Fetal weight estimation in diabetic pregnancies using the gestation-adjusted projection method: comparison of two timing strategies for third-trimester sonography. J Ultrasound Med. 2015;34(6):971-5.
Comparison of manual versus automated measurement to estimate fetal weight in isolated oligohydramnios with preterm prelabor rupture of membranes
Year 2020,
Volume: 17 Issue: 4, 524 - 528, 31.12.2020
Orhan Altınboğa
,
Hasan Eroglu
,
Seyit Ahmet Erol
,
Betül Yakıştıran
,
Emre Başer
,
Aykan Yücel
Abstract
Objective
It was aimed to evaluate the effects of alternative measurement methods in estimating actual birth weight (actual BW) in third-trimester isolated oligohydramnios.
Methods
In our study in prospective design, 78 pregnant women between 336/7and 366/7 weeks of gestation were evaluated. Routine biometric measurements were obtained through two-dimensional (2D) ultrasonography. Calipers were placed in the sections where the measurements were made for manual measurement. Then, automatic measurement was obtained by sonography device on the same image. Fetal weight was estimated using the Hadlock II formula.
Results
The mean manual and automated estimated fetal weights (EFWs) and actual birth weights (actual BWs) were 2281.1±326, 2371.5±324 and 2417.2±353, respectively. Manual EFW was lower than both actual BW and automated EFW at a statistically significant level (p = 0.002, p = 0.001, respectively). In correlation analysis, a significant positive correlation was found between actual BW and, both manual EFW and automated EFW (p <0.001). However, this relationship was higher in automated EFW when compared to manual EFW (r=0.858 vs r=0.734).
Conclusion
It is very important to estimate the EFW accurately in the practice of obstetrics. In our study, the automatically obtained EFW was found to be closer to the actual BW when compared to the manually obtained EFW. Artificial intelligence, which has recently become one of the most important subjects of technology, could provide us greater assistance in estimating fetal weight when used in sonography devices in the near future.
References
- 1. Das UG, Sysyn GD. Abnormal fetal growth: intrauterine growth retardation, small for gestational age, large for gestational age. Pediatr Clin North Am. 2004;51(3):639-54, viii.
- 2. Gynecologists ACoOa. Shoulder Asocial. COG Practice Pattern 2002;40.
- 3. Huber C, Zdanowicz JA, Mueller M, Surbek D. Factors influencing the accuracy of fetal weight estimation with a focus on preterm birth at the limit of viability: a systematic literature review. Fetal Diagn Ther. 2014;36(1):1-8.
- 4. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements--a prospective study. Am J Obstet Gynecol. 1985;151(3):333-7.
- 5. Rutherford SE, Smith CV, Phelan JP, Kawakami K, Ahn MO. Four-quadrant assessment of amniotic fluid volume. Interobserver and intraobserver variation. J Reprod Med. 1987;32(8):587-9.
- 6. Dudley NJ. A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol. 2005;25(1):80-9.
- 7. Barel O, Maymon R, Vaknin Z, Tovbin J, Smorgick N. Sonographic fetal weight estimation - is there more to it than just fetal measurements? Prenat Diagn. 2014;34(1):50-5.
- 8. Ott WJ, Doyle S, Flamm S. Accurate ultrasonic estimation of fetal weight. Am J Perinatol. 1985;2(3):178-82.
- 9. Melamed N, Yogev Y, Ben-Haroush A, Meizner I, Mashiach R, Glezerman M. Does use of a sex-specific model improve the accuracy of sonographic weight estimation? Ultrasound Obstet Gynecol. 2012;39(5):549-57.
- 10. Blann DW, Prien SD. Estimation of fetal weight before and after amniotomy in the laboring gravid woman. Am J Obstet Gynecol. 2000;182(5):1117-20.
- 11. Farrell T, Holmes R, Stone P. The effect of body mass index on three methods of fetal weight estimation. BJOG. 2002;109(6):651-7.
- 12. Blitz MJ, Rochelson B, Stork LB, Augustine S, Greenberg M, Sison CP, Vohra N. Maternal Body Mass Index and Amniotic Fluid Index in Late Gestation. J Ultrasound Med. 2018;37(3):561-8.
- 13. Ashwal E, Hiersch L, Melamed N, Bardin R, Wiznitzer A, Yogev Y. Does the level of amniotic fluid have an effect on the accuracy of sonographic estimated fetal weight at term? J Matern Fetal Neonatal Med. 2015;28(6):638-42.
- 14. Eroglu H, Orgul G, Avci E, Altinboga A, Karakoc G, Yucel A. Comparison of automated vs. manual measurement to estimate fetal weight in isolated polyhydramnios. J Perinat Med. 2019;47(6):592-7.
- 15. Predanic M, Cho A, Ingrid F, Pellettieri J. Ultrasonographic estimation of fetal weight: acquiring accuracy in residency. J Ultrasound Med. 2002;21(5):495-500.
- 16. Townsend RR, Filly RA, Callen PW, Laros RK. Factors affecting prenatal sonographic estimation of weight in extremely low birthweight infants. J Ultrasound Med. 1988;7(4):183-7.
- 17. Liao S, Wang Y, Xiao S, Deng X, Fang B, Yang F. A New Model for Birth Weight Prediction Using 2- and 3-Dimensional Ultrasonography by Principal Component Analysis: A Chinese Population Study. J Ultrasound Med. 2018.
- 18. Catov JM, Lee M, Roberts JM, Xu J, Simhan HN. Race Disparities and Decreasing Birth Weight: Are All Babies Getting Smaller? Am J Epidemiol. 2016;183(1):15-23.
- 19. Oshiro CE, Novotny R, Grove JS, Hurwitz EL. Race/Ethnic Differences in Birth Size, Infant Growth, and Body Mass Index at Age Five Years in Children in Hawaii. Child Obes. 2015;11(6):683-90.
- 20. O'Connor C, O'Higgins A, Doolan A, Segurado R, Stuart B, Turner MJ, Kennelly MM. Birth weight and neonatal adiposity prediction using fractional limb volume obtained with 3D ultrasound. Fetal Diagn Ther. 2014;36(1):44-8.
- 21. Moore GS, Post AL, West NA, Hart JE, Lynch AM. Fetal weight estimation in diabetic pregnancies using the gestation-adjusted projection method: comparison of two timing strategies for third-trimester sonography. J Ultrasound Med. 2015;34(6):971-5.