Kombine Yükleme Altında Kazıkların Tasarımında; Kazık Uzunluğunun, Kazık Aralığının ve Rölatif Sıkılığın Etkisi
Year 2024,
Volume: 6 Issue: 2, 83 - 110
Münire Fındık
,
İlyas Devran Çelik
,
Ercan Egemen Başar
,
Nilay Keskin
,
Soner Uzundurukan
Abstract
Kazıklı temel sistemlerinde hem eksenel hem de yanal yüklerden etkilenen önemli yapılarda yer değiştirmelerin elastik sınırlar içerisinde sınırlandırılması gerekmektedir. İzin verilen deplasman yükleme koşulları için; kazık çapı, kazık aralığı, kazık uzunluğu/kazık çapı oranı ve relative sıkılığının etkisi dikkate alınmalıdır. Bu amaçla yüklemeler orta ve çok sıkı kum koşullarında kazık boyu/kazı çapı oranları 10,15 ve 30, kazık aralıkları 3D ve 6D ve zeminin rölatif sıkılığı %50 ve %85 olarak dikkate alınarak gerçekleştirilmiştir. Eksenel ve yanal yük etkileri altındaki yüklemeye bağlı olarak kazıklı temel sisteminin düşey ve yanal yer değiştirmeleri ve zemin gerilmeleri belirlenerek temel sistemi ile zemin arasındaki ilişki ifade edilmiştir. Deneysel veriler Plaxis 3D programında da analiz edilmiştir. Yapılan model testleri ve Plaxis 3D sonuçlarından, yatay yüklü kazıklı temel sistemlerinde zemin-yapı etkileşimi için optimum tasarım parametreleri belirlenmiştir.
Supporting Institution
SDÜBAP, YÖK 100/2000
Project Number
FDK-2021-8242.
Thanks
Bu çalışma YÖK 100/2000 doktora programının ‘İnşaat, Yapım Yönetimi ve Yapı Malzemeleri’ tematik alanı kapsamında hazırlanmıştır. Yazarlar, YÖK ve YÖK100/2000 programı çalışanlarına teşekkür eder. Finansal kaynaklar için SDUBAP'a teşekkür ederiz.
References
- Ashour M., Norris G., & Elfass S. (2008). Analysis of Laterally Loaded Long or Intermediate Drilled Shafts of Small or Large Diameter in Layered Soil, Report CA04-0252, Department of civil and environmental engineering university of nevada, Reno.
- Ateş, B., & Şadoglu, E. (2021). Experimental Investigation of Optimum Pile Spacing of Pile Raft Foundations on Sand Soils, Technical journal, 32(1), 10477 - 10494. https://doi.org/10.18400/tekderg.644885
- Brown, D. A., Reese, L. C., & O’Neill, M. W. (1987). Cyclic Lateral Loading of a Large-Scale Pile Group Journal of geotechnical engineering, 120 (6), 1018-1033. , 113(11), 1326– 1343. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:11(1326)
- Chandrasekaran, S. S. Boominathan, A. & Dodagoudar, G. R. (2010). Group Interaction Effects on Laterally Loaded Piles İn Clay, Journal of geotechnıcal and geoenvıronmental engıneerıng, 136(4). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000245
- Duncan, M. J., & Ooi, P. S. K. (1994). Lateral Load Analysis of Groups of Piles and Drilled Shafts, Journal of geotecnical engineering, ASCE, 120(6), 1034. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1034)
- Duncan, M., Evans, L. T. & Ooi, P. S. K. (1994). Lateral Load Analysis of Single Piles and Drilled Shafts, Journal of geotechnical engineering, 120 (6), 1018-1033. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1018)
- Kımura, M., Adachı, T., Kameı, H., & Zhang, F. (1995). 3-D Finite Element Analyses of The Ultimate Behaviour of Laterally Loaded Cast-In- Place Concrete Piles, Proc., 5th Int. Symp. On Numerical Models İn Geomechanics, G. N. Pande and S. Pietruszczak, Eds., Numog V.A.A. Balkema, Rotterdam.
- Lee, J., Prezzi, M., & Salgado, R. (2011). Experimental İnvestigation of the Combined Load Response of Model Piles Driven İn Sand. Geotech Test J 34(6),1–15. https://doi.org/10.1520/GTJ103269
- Matlock, H., & Reese, L. C. (1960). Generalized Solutions for Laterally Loaded Piles, Transactions of the american society of civil engineers, 127(1), 1220–1247. https://doi.org/10.1061/JSFEAQ.0000303
- Nguyen, Q. Van, Fatahi, B. & Hokmabadi, A. S. (2017). Influence of Size and Load Bearing Mechanism of Piles on Seismic Performance of Buildings Considering Soil-Pilestructure Interaction, International journal of geomechanics, 17(7), 1–22. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000869
- Phanikanth, V. S., Choudhury Deepankar, & Reddy G. R. (2010). Behaviour of Fixed Head Single Pile İn Cohesionless Soil Under Lateral Loads, EDJE, 15(M),1243-1262.
- Phanikanth, V.S., Choudhury, D. & Reddy G. R. (2010). Response of Single Pile Under Lateral Loads in Cohesionless Soils. Electronic journal of geotechnical engineering, 15(10)-H, 813-830.
- Plaxıs 3D. (2013). Manuals. Plaxis Finite Element Code for Soil and Rock Analysis 3D Version 2013, (Edited by Brınkgreeve, R.J.B.), Delft University of Technology & PLAXIS The Netherlands.
- Poulos, H. G. & Davis, E. H. (1980). Pile Foundation Analysis and Design, Rainbow- Bridge Book Co., England.
- Poulos, H. G. (1971a). Behavior of Laterally Loaded Piles I. Single Piles, Journal of soil mechanics & foundations div, 97(5), 711–731. https://doi.org/10.1061/JSFEAQ.0001592
- Poulos, H. G. (1971b). Behavior Of Laterally Loaded Piles II. Pile Groups, Journal of soil mechanics & foundations div, 97(5), 733–751. https://doi.org/10.1061/JSFEAQ.0001593.
- Reese, Cox, W. R. & Koop, F. D. (1974). Analysis of Laterally Loaded Piles İn Sand, Offshore Technology conference, Texas, May. https://doi.org/10.4043/2080-MS.
Sadrekerimi, J., & Asem, A. (2010). The Effect of Pile Spacing on Bearing Capacity of Pile Groups, From Research to Design in European Practice, Bratislava, Slovak Republic.
- Salgado, R. (2007). The Engineering of Foundations. The Mcgraw-Hill Companies, Inc., UK.
- Salini U. & Girish M. S. (2009). Lateral Load Capacity of Model Piles on Cohesionless Soil, EDJE, 14, 1-11.
- Sawant, V.A., & Shukla, S.K. (2012). Finite Element Analysis for Laterally Loaded Piles İn Sloping Ground, Coupled systems mechanics, 1(1): 59-78. https://doi.org/10.12989/csm.2012.1.1.059
- Sawwaf, M. (2010). Experimental Study of Eccentrically Loaded Raft with Connected and Unconnected Short Piles, Journal geotecnical. geoenviron. engineering., ASCE, 136(10), 1394-1402. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000341
- Terzaghi, K. (1955). Evaluation of Coefficients of Subgrade Reaction, Géotechnique, (4), 297-326.
- Terzi, N.U., Kılıç, H., & Gültekin, S., (2009). Experimental and Numerical Investigation of Behavior of a Laterally Loaded Model Pile in Sand Environment, Journal of engineering sciences, 15(1), 119-127.
- Uncuoğlu E., & Laman M., (2013). Experimental Investigation of the Behavior of Laterally Loaded Short Piles, Technical journal, 24(116) ,6257-6278, 394
- Uray E., Zarzour M., & Tan Ö. (2019). Investigation of Preliminary Design Guidelines for Horizontal Loaded Pile in Sandy Soils, 8th International Geotechnical symposium, Istanbul, November.
- Zadeh, N. G., & Kalantari, B. (2011). Performance of single pile under vertical and lateral load in sand, clay and layered soil. EJGE, 16, 1131-1146.
- Zhang J., Wang X., Wang H., & Qin H. (2020). Model Test and Numerical Simulation of Single Pile Response Under Combined Loading İn Slope, Appl. Sci. 10(17), 6140. https://doi.org/10.3390/app10176140
- Zhang, L., Silva, F. & Grismala, R. (2005). Ultimate Lateral Resistance to Piles İn Cohesionless Soils. Journal of geotechnical and geoenvironmental engineering, 131(1), 78-83. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(78)
The Design of Piles under Combined Loading: Effect of Pile Length, Pile Spacing and Relative Density
Year 2024,
Volume: 6 Issue: 2, 83 - 110
Münire Fındık
,
İlyas Devran Çelik
,
Ercan Egemen Başar
,
Nilay Keskin
,
Soner Uzundurukan
Abstract
In pile foundation systems, displacements in important structures affected by both axial and lateral loads must be limited within elastic limits. For elastic limits; effects of the important parameters such as; pile diameter, pile spacing, pile length /pile diameter ratio and relative density were examined. For this purpose, loadings were carried out in medium-dense and extreme dense sand conditions with the following parameter considerations: pile length/pile diameter ratios of 10, 15 and 30, pile spacings of 3D and 6D and for relative density of the soil 50% and 85%. By determining the vertical and lateral displacements of the pile foundation system formed under axial and lateral load effects and loading related ground stresses, the relationship between the foundation system and the ground was expressed. Experimental data were analyzed in Plaxis 3D. From the results of the performed model tests and Plaxis 3D optimum design parameters have been determined for soil-structure interaction in lateral loaded pile foundation systems.
Supporting Institution
SDÜBAP, YÖK 100/2000
Project Number
FDK-2021-8242.
Thanks
This study has been prepared within the thematic area of ‘Construction, Construction Management and Construction Materials’of YÖK 100/2000 doctoral program. The autors thank YÖK and YÖK100/2000 program staff. We would like to thank SDUBAP for financial resources.
References
- Ashour M., Norris G., & Elfass S. (2008). Analysis of Laterally Loaded Long or Intermediate Drilled Shafts of Small or Large Diameter in Layered Soil, Report CA04-0252, Department of civil and environmental engineering university of nevada, Reno.
- Ateş, B., & Şadoglu, E. (2021). Experimental Investigation of Optimum Pile Spacing of Pile Raft Foundations on Sand Soils, Technical journal, 32(1), 10477 - 10494. https://doi.org/10.18400/tekderg.644885
- Brown, D. A., Reese, L. C., & O’Neill, M. W. (1987). Cyclic Lateral Loading of a Large-Scale Pile Group Journal of geotechnical engineering, 120 (6), 1018-1033. , 113(11), 1326– 1343. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:11(1326)
- Chandrasekaran, S. S. Boominathan, A. & Dodagoudar, G. R. (2010). Group Interaction Effects on Laterally Loaded Piles İn Clay, Journal of geotechnıcal and geoenvıronmental engıneerıng, 136(4). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000245
- Duncan, M. J., & Ooi, P. S. K. (1994). Lateral Load Analysis of Groups of Piles and Drilled Shafts, Journal of geotecnical engineering, ASCE, 120(6), 1034. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1034)
- Duncan, M., Evans, L. T. & Ooi, P. S. K. (1994). Lateral Load Analysis of Single Piles and Drilled Shafts, Journal of geotechnical engineering, 120 (6), 1018-1033. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1018)
- Kımura, M., Adachı, T., Kameı, H., & Zhang, F. (1995). 3-D Finite Element Analyses of The Ultimate Behaviour of Laterally Loaded Cast-In- Place Concrete Piles, Proc., 5th Int. Symp. On Numerical Models İn Geomechanics, G. N. Pande and S. Pietruszczak, Eds., Numog V.A.A. Balkema, Rotterdam.
- Lee, J., Prezzi, M., & Salgado, R. (2011). Experimental İnvestigation of the Combined Load Response of Model Piles Driven İn Sand. Geotech Test J 34(6),1–15. https://doi.org/10.1520/GTJ103269
- Matlock, H., & Reese, L. C. (1960). Generalized Solutions for Laterally Loaded Piles, Transactions of the american society of civil engineers, 127(1), 1220–1247. https://doi.org/10.1061/JSFEAQ.0000303
- Nguyen, Q. Van, Fatahi, B. & Hokmabadi, A. S. (2017). Influence of Size and Load Bearing Mechanism of Piles on Seismic Performance of Buildings Considering Soil-Pilestructure Interaction, International journal of geomechanics, 17(7), 1–22. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000869
- Phanikanth, V. S., Choudhury Deepankar, & Reddy G. R. (2010). Behaviour of Fixed Head Single Pile İn Cohesionless Soil Under Lateral Loads, EDJE, 15(M),1243-1262.
- Phanikanth, V.S., Choudhury, D. & Reddy G. R. (2010). Response of Single Pile Under Lateral Loads in Cohesionless Soils. Electronic journal of geotechnical engineering, 15(10)-H, 813-830.
- Plaxıs 3D. (2013). Manuals. Plaxis Finite Element Code for Soil and Rock Analysis 3D Version 2013, (Edited by Brınkgreeve, R.J.B.), Delft University of Technology & PLAXIS The Netherlands.
- Poulos, H. G. & Davis, E. H. (1980). Pile Foundation Analysis and Design, Rainbow- Bridge Book Co., England.
- Poulos, H. G. (1971a). Behavior of Laterally Loaded Piles I. Single Piles, Journal of soil mechanics & foundations div, 97(5), 711–731. https://doi.org/10.1061/JSFEAQ.0001592
- Poulos, H. G. (1971b). Behavior Of Laterally Loaded Piles II. Pile Groups, Journal of soil mechanics & foundations div, 97(5), 733–751. https://doi.org/10.1061/JSFEAQ.0001593.
- Reese, Cox, W. R. & Koop, F. D. (1974). Analysis of Laterally Loaded Piles İn Sand, Offshore Technology conference, Texas, May. https://doi.org/10.4043/2080-MS.
Sadrekerimi, J., & Asem, A. (2010). The Effect of Pile Spacing on Bearing Capacity of Pile Groups, From Research to Design in European Practice, Bratislava, Slovak Republic.
- Salgado, R. (2007). The Engineering of Foundations. The Mcgraw-Hill Companies, Inc., UK.
- Salini U. & Girish M. S. (2009). Lateral Load Capacity of Model Piles on Cohesionless Soil, EDJE, 14, 1-11.
- Sawant, V.A., & Shukla, S.K. (2012). Finite Element Analysis for Laterally Loaded Piles İn Sloping Ground, Coupled systems mechanics, 1(1): 59-78. https://doi.org/10.12989/csm.2012.1.1.059
- Sawwaf, M. (2010). Experimental Study of Eccentrically Loaded Raft with Connected and Unconnected Short Piles, Journal geotecnical. geoenviron. engineering., ASCE, 136(10), 1394-1402. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000341
- Terzaghi, K. (1955). Evaluation of Coefficients of Subgrade Reaction, Géotechnique, (4), 297-326.
- Terzi, N.U., Kılıç, H., & Gültekin, S., (2009). Experimental and Numerical Investigation of Behavior of a Laterally Loaded Model Pile in Sand Environment, Journal of engineering sciences, 15(1), 119-127.
- Uncuoğlu E., & Laman M., (2013). Experimental Investigation of the Behavior of Laterally Loaded Short Piles, Technical journal, 24(116) ,6257-6278, 394
- Uray E., Zarzour M., & Tan Ö. (2019). Investigation of Preliminary Design Guidelines for Horizontal Loaded Pile in Sandy Soils, 8th International Geotechnical symposium, Istanbul, November.
- Zadeh, N. G., & Kalantari, B. (2011). Performance of single pile under vertical and lateral load in sand, clay and layered soil. EJGE, 16, 1131-1146.
- Zhang J., Wang X., Wang H., & Qin H. (2020). Model Test and Numerical Simulation of Single Pile Response Under Combined Loading İn Slope, Appl. Sci. 10(17), 6140. https://doi.org/10.3390/app10176140
- Zhang, L., Silva, F. & Grismala, R. (2005). Ultimate Lateral Resistance to Piles İn Cohesionless Soils. Journal of geotechnical and geoenvironmental engineering, 131(1), 78-83. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(78)