Review
BibTex RIS Cite
Year 2019, Volume: 4 Issue: 2, 34 - 51, 30.06.2019

Abstract

Amaç:

Gereç ve Yöntem: 

Bulgular:

Sonuç: 

References

  • 1. Ritchie H. and Roser M, Causes of Death, This article was first published in February 2018. https://ourworldindata.org/causes-of-death
  • 2. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–3.
  • 3. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018;29:84–91.
  • 4. Curiel T. J., Cancer Immunotherapy: Paradigms, Practice and Promise, s. 5, Springer Science+Business , 2013, Media, New York,
  • 5. Rosenberg SA. Decade in review-cancer immunotherapy: entering the mainstream of cancer treatment. Nat Rev Clin Oncol. 2014;11(11):630–632.
  • 6. Yu, B., Wang, J., He, C., Wang, W., Tang, J., Zheng, R., et al. Cytokine-induced killer cell therapy for modulating regulatory T cells in patients with non-small cell lung cancer. Experimental and Therapeutic Medicine, 2017;14(1), 831-840.
  • 7. Li, S., Young, K. H., & Medeiros, L. J. Diffuse large B-cell lymphoma. Pathology, 2018;50(1), 74-87.
  • 8. Özet G., Baykal Y., Özet A., Alanoğlu G., Adoptif İmmünoterapi, T. Klin. Tıp Bilimleri, 1996;16(5), 329-332.
  • 9. Harris T. J., Drake C. G., Primer on Tumor Immunology and Cancer Immunotherapy, Journal for ImmunoTherapy of Cancer, 2013;1(12), 1-9.
  • 10. Barbaros B. and Dikmen M , Kanser İmmünoterapisi , Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2015;31(4):177-181.
  • 11. Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., Russell, H. V., Dotti, G., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 2008;14(11), 1264-1270.
  • 12. Kueberuwa, G., Kalaitsidou, M., Cheadle, E., Hawkins, R. E., & Gilham, D. E. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. Molecular Therapy - Oncolytics, 2018; 8, 41-51.
  • 13. Bourré L., How to Assess CAR-T Cell Therapies Preclinically , Accessed February 20, 2018, https://blog.crownbio.com/car-t-cell-therapy-preclinical-assessment.
  • 14. Albert H. Supplement: Treating “Solid” Tumors with CAR T Cells Accessed November 29, 2016 , https://www.genengnews.com/magazine/283/supplement-treating-solid-tumors-with-car-t-cells/
  • 15. Kershaw M.H., Westwood J.A., Darcy P.K. Gene-engineered T cells for cancer therapy. Nat Rev Canc. 2013;13(8):525–541.
  • 16. Srivastava S., Riddell S.R. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502.
  • 17. Chakravarti D., Wong W.W. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol. 2015;33(8):449–461.
  • 18. Shirasu N., Kuroki M. Functional design of chimeric T-cell antigen receptors for adoptive immunotherapy of cancer: architecture and outcomes. Anticancer Res. 2012;32(6):2377–2383.
  • 19. Si, W., Li, C., & Wei, P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology,2018; 3(3), 179-185.
  • 20. Chang ZL, Chen YY. CARs: Synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med. 2017;23:430–450.
  • 21. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9:1183–1197.
  • 22. Zhu, X., Cai, H., Zhao, L., Ning, L., & Lang, J. CAR-T cell therapy in ovarian cancer: From the bench to the bedside. Oncotarget, 2017;8(38).
  • 23. Sadelain M., Brentjens R., Rivière I. The basic principles of chimeric antigen receptor design. Canc Discov. 2013;3(4):388–398.
  • 24. Zhao Z., Condomines M., van der Stegen S.J., Perna F., Kloss C.C., Gunset G. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–428.
  • 25. Si, W., Li, C., & Wei, P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology,2018; 3(3), 179-185.
  • 26. Au R. Immunooncology: can the right chimeric antigen receptors T-cell design be made to cure all types of cancers and will it be covered? J Pharm (2017) 2017:1-9.
  • 27. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010;24(6):1160–70.
  • 28. Elahi, R., Khosh, E., Tahmasebi, S., & Esmaeilzadeh, A. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Frontiers in Immunology, 2018;9.
  • 29. Hay KA, Turtle CJ. Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B-cell malignancies. Drugs. 2017;77:237–245.
  • 30. Townsend, M. H., Shrestha, G., Robison, R. A., & O’Neill, K. L. The expansion of targetable biomarkers for CAR T cell therapy. Journal of Experimental & Clinical Cancer Research,2018;37(1).
  • 31. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. Cytokine-associated toxicity in a clinical trial of anti-CD19 plenary paper B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor – transduced T cells. Blood. 2012;119(12):2709–20.
  • 32. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RPT, Carpenter RO, Maryalice SS, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–549.
  • 33. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2017;4:92–101.
  • 34. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010;24(6):1160–70.
  • 35. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res 2017;5(1):22.
  • 36. Manesh ME, Esmaeilzadeh A, Mirzaei MH. IL-24: a novel gene therapy candidate for immune system upregulation in Hodgkin’s lymphoma. J Med Hypoth Ideas 2015;9(1):61–6.
  • 37. Zhang, Q., Zhang, Z., Peng, M., Fu, S., Xue, Z., & Zhang, R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. OncoImmunology, 2016; 5(12).
  • 38. Zhao, Z., Chen, Y., Francisco, N. M., Zhang, Y., & Wu, M. The application of CAR-T cell therapy in hematological malignancies: Advantages and challenges. Acta Pharmaceutica Sinica B, 2018;8(4), 539-551.
  • 39. Han EQ, Li XL, Wang CR, Li TF, Han SY.. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J HematolOncol 2013; 6:47.
  • 40. Colovos C, Villena-Vargas J, Adusumilli PS.. Safety and stability of retrovirally transduced chimeric antigen receptor T cells. Immunotherapy 2012; 4:899-902.
  • 41. Frigault MJ, Lee J, Basil MC, Carpenito C, Motohashi S, Scholler J, Kawalekar OU, Guedan S, McGettigan SE, Posey AD Jr et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res 2015; 3:356-67.
  • 42. De Oliveira SN, Ryan C, Giannoni F, Hardee CL, Tremcinska I, Katebian B, et al. Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy. Hum Gene Ther 2013; 24:824-39.
  • 43. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother 2013; 36:112-23.
  • 44. Nakazawa Y, Huye LE, Salsman VS, Leen AM, Ahmed N, Rollins L, et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol Ther 2011; 19:2133-43.
  • 45. Tsukahara T, Iwase N, Kawakami K, Iwasaki M, Yamamoto C, Ohmine K, et al. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Ther 2015; 22:209-15.
  • 46. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. . Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.
  • 47. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. . Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.
  • 48. Watanabe, K., Kuramitsu, S., Posey, A. D., & June, C. H. Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Frontiers in Immunology, 2018;9.
  • 49. Maude SL, Laetsch, T.W., Buechner J., Rives S, Boyer M., Bittencourt, H. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018;378:439–448.
  • 50. Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New England Journal of Medicine, 2017;377(26), 2531-2544.
  • 51. Till, B. G., Jensen, M. C., Wang, J., Qian, X., Gopal, A. K., Maloney, D. G.,et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot clinical trial results. Blood, 2012;119(17), 3940-3950.
  • 52. Brentjens RJ, Curran KJ. Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematology Am Soc Hematol Educ Program. 2012;2012:143–151.
  • 53. Chang L-J , Dong L. , Zhu J. , Ying Z. , Kuo H.H. , Liu Y., et al. 4SCAR19 chimeric antigen receptor-modified T cells as a breakthrough therapy for highly chemotherapy-resistant late-stage B cell lymphoma patients with bulky tumor mass. Blood, 2015; 126, 264
  • 54. Chang, L.-J., Dong L , Liu Y-C , Tsao S-T , Li Y-C , Liu L , et al. Safety and efficacy evaluation of 4SCAR19 chimeric antigen receptor-modified T cells targeting B Cell acute lymphoblastic leukemia—three-year follow-up of a multicenter phase I/II study. Blood, 2016; 128, 587
  • 55. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 2015;15:1145–1154.
  • 56. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol. Rev. 2014;257:83–90.
  • 57. Titov, A., Petukhov, A., Staliarova, A., Motorin, D., Bulatov, E., Shuvalov, O., . . . Barlev, N. A. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death & Disease, 2018;9(9).
  • 58. Landoni E., Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther. 2018;18:65–75.
  • 59. Chen F., Fan C., Gu X., Zhang H., Liu Q., Gao X. Construction of anti-CD20 single-chain antibody-CD28-CD137-TCR ζ recombinant genetic modified T cells and its treatment effect on b cell lymphoma. Med Sci Monit. 2015;21:2110–2115.
  • 60. Wang C.M., Wu Z.Q., Wang Y., Guo Y.L., Dai H.R., Wang X.H. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017;23:1156–1166.
  • 61. Guo B., Chen M., Han Q., Hui F., Dai H., Zhang W. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J Cell Immunother. 2016;2:28–35.
  • 62. Kakarla S., Gottschalk S. CAR-T cells for solid tumors: armed and ready to go? Cancer J. 2014;20:151–155.
  • 63. Lamers C.H., Sleijfer S., Van Steenbergen S., Van Elzakker P., Van Krimpen B., Groot C. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21:904–912.
  • 64. Hillerdal V., Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs. 2015;29:75–89.
  • 65. You F., Jiang L., Zhang B., Lu Q., Zhou Q., Liao X. Phase I clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci. 2016;59:386–397.
  • 66. Xu, J., Wang, Y., Shi, J., Liu, J., Li, Q., & Chen, L. Combination therapy: A feasibility strategy for CAR T cell therapy in the treatment of solid tumors (Review). Oncology Letters, 2018.
  • 67. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–461.
  • 68. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.
  • 69. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178:1221–1232.
  • 70. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122:899–910.
  • 71. Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Asp Med. 2008;29:290–308.
  • 72. Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44:200–206.
  • 73. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol cell Biol. 2007;8:221–233. doi: 10.1038/nrm2125.
  • 74. Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44:200–206.
  • 75. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol cell Biol. 2007;8:221–233.
  • 76. Mendes O, Kim H-T, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis. 2005;22:237–246.
  • 77. Gutiérrez-Fernández A, Fueyo A, Folgueras AR, et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 2008;68:2755–2763.
  • 78. Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A., & Marson, A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports, 2017;7(1).
  • 79. John, L. B., Kershaw, M. H., & Darcy, P. K. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. OncoImmunology, 2013;2(10).
  • 80. Mardomi, A., & Abediankenari, S. Matrix Metalloproteinase 8: Could it Benefit the CAR-T Cell Therapy of Solid Tumors?- a- Commentary on Therapeutic Potential. Cancer Microenvironment, 2018;11(1), 93-96.
  • 81. Heczey A., Liu D., Tian G., Courtney A.N., Wei J., Marinova E., Gao X., Guo L., Yvon E., Hicks J., et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood. 2014;124:2824–2833.
  • 82. Simon, B., Wiesinger, M., März, J., Wistuba-Hamprecht, K., Weide, B., Schuler-Thurner, B. Et al. The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma. International Journal of Molecular Sciences, 2018;19(8), 2365.
  • 83. Grigor, E. J., Fergusson, D., Kekre, N., Montroy, J., Atkins, H., Seftel, M., . . . Lalu, M. M. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfusion Medicine Reviews, 2019.
  • 84. Ahmadi, F., & Esmaeilzade, A. IL-1R2: A novel approach for gene therapy in atherosclerosis. Hypothesis, 2016 ;14(1).
  • 85. Hartmann, J., Schüßler‐Lenz, M., Bondanza, A., & Buchholz, C. J. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 2017; 9(9), 1183-1197.
  • 86. Sun, S., Hao, H., Yang, G., Zhang, Y., & Fu, Y. Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. Journal of Immunology Research, 2018, 2018;1-10.
  • 87. DeFrancesco L CAR‐T's forge ahead, despite Juno deaths. Nat Biotechnol 2017;35: 6–7.
  • 88. Lee, DW, Gardner, R, Porter, DL, Louis, CU, Ahmed, N, Jensen, M et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124: 188–195.
  • 89. Bonifant, C. L., Jackson, H. J., Brentjens, R. J., & Curran, K. J. Toxicity and management in CAR T-cell therapy. Molecular Therapy Oncolytics, 2016;3, 16011.
  • 90. Amill, L. P., Marzal, B., Urbano-Ispizua, A., Juan, M., & Antonio, B. M. CAR-T cell therapy, a door is open to find innumerable possibilities of treatments for cancer patients. Turkish Journal of Hematology, 2018.
  • 91. Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014;6(224).
  • 92. Lee, DW, Kochenderfer, JN, Stetler-Stevenson, M, Cui, YK, Delbrook, C, Feldman, SA et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet , 2015;385: 517–528.
  • 93. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–398.
  • 94. Mei, H., Jiang, H., Wu, Y., Guo, T., Xia, L., Jin, R., & Hu, Y. Neurological toxicities and coagulation disorders in the cytokine release syndrome during CAR-T therapy. British Journal of Haematology, 2017;181(5), 689-692.
  • 95. Lamers, C. H., Sleijfer, S., Steenbergen, S. V., Elzakker, P. V., Krimpen, B. V., Groot, C., et al. Treatment of Metastatic Renal Cell Carcinoma With CAIX CAR-engineered T cells: Clinical Evaluation and Management of On-target Toxicity. Molecular Therapy, 2013;21(4), 904-912.
  • 96. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010;18: 843–85.
  • 97. Curran, KJ, Pegram, HJ and Brentjens, RJ Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 2012;14: 405–415.
  • 98. Maus, MV, Haas, AR, Beatty, GL, Albelda, SM, Levine, BL, Liu, X et al.T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013;1: 26–31.
  • 99. Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., et al. Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. Journal of Clinical Oncology, 2008;26(32), 5233-5239.
  • 100. Hacein-Bey-Abina, S, Garrigue, A, Wang, GP, Soulier, J, Lim, A, Morillon, E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.

Immunotherapeutic CAR T-Cell Engineering

Year 2019, Volume: 4 Issue: 2, 34 - 51, 30.06.2019

Abstract




Cancer is a significant problem in our age and sought alternative
therapies. Immunotherapeutic Car T-cell is a different kind of modality treatment
under adoptive immunotherapy and has many promising clinical trials in recent
years. CARs are synthetic receptors with a modular design. CAR T-cells
recognize the antigen by antigen-sensitive antibody header (scFv). In this way,
by activating the intracellular signaling pathway, it begins to proliferate and
secrete various cytokines to kill the cell they recognize.
Research on treating solid tumors with Car T-cell still is a controversial and uncertain issue compared to it frequently
uses in
cancers of the
blood-producing cells
(hematologic cancer) such as leukemia and
lymphoma. Although engineering immune cells to treat cancer has various side
effects such as off-target recognition, neurotoxicity, cytokine release
syndrome (CRS) and toxicity, many clinical trial results are optimistic.




References

  • 1. Ritchie H. and Roser M, Causes of Death, This article was first published in February 2018. https://ourworldindata.org/causes-of-death
  • 2. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–3.
  • 3. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018;29:84–91.
  • 4. Curiel T. J., Cancer Immunotherapy: Paradigms, Practice and Promise, s. 5, Springer Science+Business , 2013, Media, New York,
  • 5. Rosenberg SA. Decade in review-cancer immunotherapy: entering the mainstream of cancer treatment. Nat Rev Clin Oncol. 2014;11(11):630–632.
  • 6. Yu, B., Wang, J., He, C., Wang, W., Tang, J., Zheng, R., et al. Cytokine-induced killer cell therapy for modulating regulatory T cells in patients with non-small cell lung cancer. Experimental and Therapeutic Medicine, 2017;14(1), 831-840.
  • 7. Li, S., Young, K. H., & Medeiros, L. J. Diffuse large B-cell lymphoma. Pathology, 2018;50(1), 74-87.
  • 8. Özet G., Baykal Y., Özet A., Alanoğlu G., Adoptif İmmünoterapi, T. Klin. Tıp Bilimleri, 1996;16(5), 329-332.
  • 9. Harris T. J., Drake C. G., Primer on Tumor Immunology and Cancer Immunotherapy, Journal for ImmunoTherapy of Cancer, 2013;1(12), 1-9.
  • 10. Barbaros B. and Dikmen M , Kanser İmmünoterapisi , Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2015;31(4):177-181.
  • 11. Pule, M. A., Savoldo, B., Myers, G. D., Rossig, C., Russell, H. V., Dotti, G., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: Persistence and antitumor activity in individuals with neuroblastoma. Nature Medicine, 2008;14(11), 1264-1270.
  • 12. Kueberuwa, G., Kalaitsidou, M., Cheadle, E., Hawkins, R. E., & Gilham, D. E. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. Molecular Therapy - Oncolytics, 2018; 8, 41-51.
  • 13. Bourré L., How to Assess CAR-T Cell Therapies Preclinically , Accessed February 20, 2018, https://blog.crownbio.com/car-t-cell-therapy-preclinical-assessment.
  • 14. Albert H. Supplement: Treating “Solid” Tumors with CAR T Cells Accessed November 29, 2016 , https://www.genengnews.com/magazine/283/supplement-treating-solid-tumors-with-car-t-cells/
  • 15. Kershaw M.H., Westwood J.A., Darcy P.K. Gene-engineered T cells for cancer therapy. Nat Rev Canc. 2013;13(8):525–541.
  • 16. Srivastava S., Riddell S.R. Engineering CAR-T cells: design concepts. Trends Immunol. 2015;36(8):494–502.
  • 17. Chakravarti D., Wong W.W. Synthetic biology in cell-based cancer immunotherapy. Trends Biotechnol. 2015;33(8):449–461.
  • 18. Shirasu N., Kuroki M. Functional design of chimeric T-cell antigen receptors for adoptive immunotherapy of cancer: architecture and outcomes. Anticancer Res. 2012;32(6):2377–2383.
  • 19. Si, W., Li, C., & Wei, P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology,2018; 3(3), 179-185.
  • 20. Chang ZL, Chen YY. CARs: Synthetic immunoreceptors for cancer therapy and beyond. Trends Mol Med. 2017;23:430–450.
  • 21. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9:1183–1197.
  • 22. Zhu, X., Cai, H., Zhao, L., Ning, L., & Lang, J. CAR-T cell therapy in ovarian cancer: From the bench to the bedside. Oncotarget, 2017;8(38).
  • 23. Sadelain M., Brentjens R., Rivière I. The basic principles of chimeric antigen receptor design. Canc Discov. 2013;3(4):388–398.
  • 24. Zhao Z., Condomines M., van der Stegen S.J., Perna F., Kloss C.C., Gunset G. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–428.
  • 25. Si, W., Li, C., & Wei, P. Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology,2018; 3(3), 179-185.
  • 26. Au R. Immunooncology: can the right chimeric antigen receptors T-cell design be made to cure all types of cancers and will it be covered? J Pharm (2017) 2017:1-9.
  • 27. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010;24(6):1160–70.
  • 28. Elahi, R., Khosh, E., Tahmasebi, S., & Esmaeilzadeh, A. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Frontiers in Immunology, 2018;9.
  • 29. Hay KA, Turtle CJ. Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B-cell malignancies. Drugs. 2017;77:237–245.
  • 30. Townsend, M. H., Shrestha, G., Robison, R. A., & O’Neill, K. L. The expansion of targetable biomarkers for CAR T cell therapy. Journal of Experimental & Clinical Cancer Research,2018;37(1).
  • 31. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. Cytokine-associated toxicity in a clinical trial of anti-CD19 plenary paper B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor – transduced T cells. Blood. 2012;119(12):2709–20.
  • 32. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RPT, Carpenter RO, Maryalice SS, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–549.
  • 33. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2017;4:92–101.
  • 34. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 2010;24(6):1160–70.
  • 35. Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res 2017;5(1):22.
  • 36. Manesh ME, Esmaeilzadeh A, Mirzaei MH. IL-24: a novel gene therapy candidate for immune system upregulation in Hodgkin’s lymphoma. J Med Hypoth Ideas 2015;9(1):61–6.
  • 37. Zhang, Q., Zhang, Z., Peng, M., Fu, S., Xue, Z., & Zhang, R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. OncoImmunology, 2016; 5(12).
  • 38. Zhao, Z., Chen, Y., Francisco, N. M., Zhang, Y., & Wu, M. The application of CAR-T cell therapy in hematological malignancies: Advantages and challenges. Acta Pharmaceutica Sinica B, 2018;8(4), 539-551.
  • 39. Han EQ, Li XL, Wang CR, Li TF, Han SY.. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J HematolOncol 2013; 6:47.
  • 40. Colovos C, Villena-Vargas J, Adusumilli PS.. Safety and stability of retrovirally transduced chimeric antigen receptor T cells. Immunotherapy 2012; 4:899-902.
  • 41. Frigault MJ, Lee J, Basil MC, Carpenito C, Motohashi S, Scholler J, Kawalekar OU, Guedan S, McGettigan SE, Posey AD Jr et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol Res 2015; 3:356-67.
  • 42. De Oliveira SN, Ryan C, Giannoni F, Hardee CL, Tremcinska I, Katebian B, et al. Modification of hematopoietic stem/progenitor cells with CD19-specific chimeric antigen receptors as a novel approach for cancer immunotherapy. Hum Gene Ther 2013; 24:824-39.
  • 43. Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping beauty system to redirect T-cell specificity for human applications. J Immunother 2013; 36:112-23.
  • 44. Nakazawa Y, Huye LE, Salsman VS, Leen AM, Ahmed N, Rollins L, et al. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor. Mol Ther 2011; 19:2133-43.
  • 45. Tsukahara T, Iwase N, Kawakami K, Iwasaki M, Yamamoto C, Ohmine K, et al. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies. Gene Ther 2015; 22:209-15.
  • 46. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. . Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.
  • 47. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. . Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.
  • 48. Watanabe, K., Kuramitsu, S., Posey, A. D., & June, C. H. Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Frontiers in Immunology, 2018;9.
  • 49. Maude SL, Laetsch, T.W., Buechner J., Rives S, Boyer M., Bittencourt, H. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018;378:439–448.
  • 50. Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. New England Journal of Medicine, 2017;377(26), 2531-2544.
  • 51. Till, B. G., Jensen, M. C., Wang, J., Qian, X., Gopal, A. K., Maloney, D. G.,et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: Pilot clinical trial results. Blood, 2012;119(17), 3940-3950.
  • 52. Brentjens RJ, Curran KJ. Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen. Hematology Am Soc Hematol Educ Program. 2012;2012:143–151.
  • 53. Chang L-J , Dong L. , Zhu J. , Ying Z. , Kuo H.H. , Liu Y., et al. 4SCAR19 chimeric antigen receptor-modified T cells as a breakthrough therapy for highly chemotherapy-resistant late-stage B cell lymphoma patients with bulky tumor mass. Blood, 2015; 126, 264
  • 54. Chang, L.-J., Dong L , Liu Y-C , Tsao S-T , Li Y-C , Liu L , et al. Safety and efficacy evaluation of 4SCAR19 chimeric antigen receptor-modified T cells targeting B Cell acute lymphoblastic leukemia—three-year follow-up of a multicenter phase I/II study. Blood, 2016; 128, 587
  • 55. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin. Biol. Ther. 2015;15:1145–1154.
  • 56. Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol. Rev. 2014;257:83–90.
  • 57. Titov, A., Petukhov, A., Staliarova, A., Motorin, D., Bulatov, E., Shuvalov, O., . . . Barlev, N. A. The biological basis and clinical symptoms of CAR-T therapy-associated toxicites. Cell Death & Disease, 2018;9(9).
  • 58. Landoni E., Savoldo B. Treating hematological malignancies with cell therapy: where are we now? Expert Opin Biol Ther. 2018;18:65–75.
  • 59. Chen F., Fan C., Gu X., Zhang H., Liu Q., Gao X. Construction of anti-CD20 single-chain antibody-CD28-CD137-TCR ζ recombinant genetic modified T cells and its treatment effect on b cell lymphoma. Med Sci Monit. 2015;21:2110–2115.
  • 60. Wang C.M., Wu Z.Q., Wang Y., Guo Y.L., Dai H.R., Wang X.H. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017;23:1156–1166.
  • 61. Guo B., Chen M., Han Q., Hui F., Dai H., Zhang W. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J Cell Immunother. 2016;2:28–35.
  • 62. Kakarla S., Gottschalk S. CAR-T cells for solid tumors: armed and ready to go? Cancer J. 2014;20:151–155.
  • 63. Lamers C.H., Sleijfer S., Van Steenbergen S., Van Elzakker P., Van Krimpen B., Groot C. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21:904–912.
  • 64. Hillerdal V., Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs. 2015;29:75–89.
  • 65. You F., Jiang L., Zhang B., Lu Q., Zhou Q., Liao X. Phase I clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci. 2016;59:386–397.
  • 66. Xu, J., Wang, Y., Shi, J., Liu, J., Li, Q., & Chen, L. Combination therapy: A feasibility strategy for CAR T cell therapy in the treatment of solid tumors (Review). Oncology Letters, 2018.
  • 67. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–461.
  • 68. Provenzano PP, Inman DR, Eliceiri KW, Knittel JG, Yan L, Rueden CT, White JG, Keely PJ. Collagen density promotes mammary tumor initiation and progression. BMC Med. 2008;6:11.
  • 69. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW, Provenzano PP, Friedl A, Keely PJ. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178:1221–1232.
  • 70. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, Trautmann A, Mami-Chouaib F, Donnadieu E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122:899–910.
  • 71. Murphy G, Nagase H. Progress in matrix metalloproteinase research. Mol Asp Med. 2008;29:290–308.
  • 72. Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44:200–206.
  • 73. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol cell Biol. 2007;8:221–233. doi: 10.1038/nrm2125.
  • 74. Shay G, Lynch CC, Fingleton B. Moving targets: emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 2015;44:200–206.
  • 75. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol cell Biol. 2007;8:221–233.
  • 76. Mendes O, Kim H-T, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis. 2005;22:237–246.
  • 77. Gutiérrez-Fernández A, Fueyo A, Folgueras AR, et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 2008;68:2755–2763.
  • 78. Rupp, L. J., Schumann, K., Roybal, K. T., Gate, R. E., Ye, C. J., Lim, W. A., & Marson, A. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific Reports, 2017;7(1).
  • 79. John, L. B., Kershaw, M. H., & Darcy, P. K. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. OncoImmunology, 2013;2(10).
  • 80. Mardomi, A., & Abediankenari, S. Matrix Metalloproteinase 8: Could it Benefit the CAR-T Cell Therapy of Solid Tumors?- a- Commentary on Therapeutic Potential. Cancer Microenvironment, 2018;11(1), 93-96.
  • 81. Heczey A., Liu D., Tian G., Courtney A.N., Wei J., Marinova E., Gao X., Guo L., Yvon E., Hicks J., et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood. 2014;124:2824–2833.
  • 82. Simon, B., Wiesinger, M., März, J., Wistuba-Hamprecht, K., Weide, B., Schuler-Thurner, B. Et al. The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma. International Journal of Molecular Sciences, 2018;19(8), 2365.
  • 83. Grigor, E. J., Fergusson, D., Kekre, N., Montroy, J., Atkins, H., Seftel, M., . . . Lalu, M. M. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfusion Medicine Reviews, 2019.
  • 84. Ahmadi, F., & Esmaeilzade, A. IL-1R2: A novel approach for gene therapy in atherosclerosis. Hypothesis, 2016 ;14(1).
  • 85. Hartmann, J., Schüßler‐Lenz, M., Bondanza, A., & Buchholz, C. J. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 2017; 9(9), 1183-1197.
  • 86. Sun, S., Hao, H., Yang, G., Zhang, Y., & Fu, Y. Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. Journal of Immunology Research, 2018, 2018;1-10.
  • 87. DeFrancesco L CAR‐T's forge ahead, despite Juno deaths. Nat Biotechnol 2017;35: 6–7.
  • 88. Lee, DW, Gardner, R, Porter, DL, Louis, CU, Ahmed, N, Jensen, M et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014;124: 188–195.
  • 89. Bonifant, C. L., Jackson, H. J., Brentjens, R. J., & Curran, K. J. Toxicity and management in CAR T-cell therapy. Molecular Therapy Oncolytics, 2016;3, 16011.
  • 90. Amill, L. P., Marzal, B., Urbano-Ispizua, A., Juan, M., & Antonio, B. M. CAR-T cell therapy, a door is open to find innumerable possibilities of treatments for cancer patients. Turkish Journal of Hematology, 2018.
  • 91. Davila, M. L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014;6(224).
  • 92. Lee, DW, Kochenderfer, JN, Stetler-Stevenson, M, Cui, YK, Delbrook, C, Feldman, SA et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet , 2015;385: 517–528.
  • 93. Sadelain M, Brentjens R, Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–398.
  • 94. Mei, H., Jiang, H., Wu, Y., Guo, T., Xia, L., Jin, R., & Hu, Y. Neurological toxicities and coagulation disorders in the cytokine release syndrome during CAR-T therapy. British Journal of Haematology, 2017;181(5), 689-692.
  • 95. Lamers, C. H., Sleijfer, S., Steenbergen, S. V., Elzakker, P. V., Krimpen, B. V., Groot, C., et al. Treatment of Metastatic Renal Cell Carcinoma With CAIX CAR-engineered T cells: Clinical Evaluation and Management of On-target Toxicity. Molecular Therapy, 2013;21(4), 904-912.
  • 96. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010;18: 843–85.
  • 97. Curran, KJ, Pegram, HJ and Brentjens, RJ Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 2012;14: 405–415.
  • 98. Maus, MV, Haas, AR, Beatty, GL, Albelda, SM, Levine, BL, Liu, X et al.T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 2013;1: 26–31.
  • 99. Dudley, M. E., Yang, J. C., Sherry, R., Hughes, M. S., Royal, R., Kammula, U., et al. Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. Journal of Clinical Oncology, 2008;26(32), 5233-5239.
  • 100. Hacein-Bey-Abina, S, Garrigue, A, Wang, GP, Soulier, J, Lim, A, Morillon, E et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–3142.
There are 100 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Review Article
Authors

Gülçin Gacar 0000-0003-2960-6826

Elif Deniz Uzun This is me 0000-0001-6725-3959

Sema Yusufoğlu This is me 0000-0003-3117-388X

Publication Date June 30, 2019
Published in Issue Year 2019 Volume: 4 Issue: 2

Cite

APA Gacar, G., Uzun, E. D., & Yusufoğlu, S. (2019). Immunotherapeutic CAR T-Cell Engineering. Journal of Immunology and Clinical Microbiology, 4(2), 34-51.
AMA Gacar G, Uzun ED, Yusufoğlu S. Immunotherapeutic CAR T-Cell Engineering. J Immunol Clin Microbiol. June 2019;4(2):34-51.
Chicago Gacar, Gülçin, Elif Deniz Uzun, and Sema Yusufoğlu. “Immunotherapeutic CAR T-Cell Engineering”. Journal of Immunology and Clinical Microbiology 4, no. 2 (June 2019): 34-51.
EndNote Gacar G, Uzun ED, Yusufoğlu S (June 1, 2019) Immunotherapeutic CAR T-Cell Engineering. Journal of Immunology and Clinical Microbiology 4 2 34–51.
IEEE G. Gacar, E. D. Uzun, and S. Yusufoğlu, “Immunotherapeutic CAR T-Cell Engineering”, J Immunol Clin Microbiol, vol. 4, no. 2, pp. 34–51, 2019.
ISNAD Gacar, Gülçin et al. “Immunotherapeutic CAR T-Cell Engineering”. Journal of Immunology and Clinical Microbiology 4/2 (June 2019), 34-51.
JAMA Gacar G, Uzun ED, Yusufoğlu S. Immunotherapeutic CAR T-Cell Engineering. J Immunol Clin Microbiol. 2019;4:34–51.
MLA Gacar, Gülçin et al. “Immunotherapeutic CAR T-Cell Engineering”. Journal of Immunology and Clinical Microbiology, vol. 4, no. 2, 2019, pp. 34-51.
Vancouver Gacar G, Uzun ED, Yusufoğlu S. Immunotherapeutic CAR T-Cell Engineering. J Immunol Clin Microbiol. 2019;4(2):34-51.

88x31.png 

Creative Commons Attribution Non-Commercial License: The articles in the Journal of Immunology and Clinical Microbiology are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

JICM is a product of QMEL® medicine & publishing