Research Article
BibTex RIS Cite

Femtosecond Laser Cleaning of Archaeological Cultural Assets

Year 2022, Volume: 17 Issue: 2, 75 - 84, 30.06.2022

Abstract

This study presents research on femtosecond laser ablation of corrosion crusts from ancient coin. On the surface of ancient coin sample was irradiated with 800 nm laser wavelength, 90 femtosecond laser pulses in duration, and 1 kHz repetition rate. Femtosecond laser ablation was carried out changing laser intensity using from 1.96 x1013 W/cm2 to 9.82 x 1014 W/cm2 in atmospheric conditions. Scanning electron microscope and optic microscope images were recorded and scanning electron microscope- energy dispersive X-ray spectroscopy graphs and reports were recorded. The used coin belonged to the near Roman Imperial Age where the copper-zinc alloy was used for coins. The amount of copper and zinc ratios before and after application of laser ablation procedure is reported by courtesy of scanning electron microscope-energy dispersive X-ray spectroscopy graphs and reports on surface of coin. Scanning electron microscope and light microscope images show that laser intensities above 9,82 x1014 W/cm2 perform an effective cleaning process.

Thanks

Authors kindly would like to thank, - Selçuk University, High Technology Research and Application Center and - University of Selçuk, SULTAN Center and Conservation and Restoration of Cultural Assets Department for supplying with infrastructure, - Republic of Turkey, Ministry of Culture to permission and to supply ancient coin. Note: The permission document to allow us to remove of corrosion layer on ancient coin samples have been got from Ministry of Culture of Republic of Turkey and they have been given back to museum after cleaning process.

References

  • Referans1 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016a). Evaluatıng Laser Cleanıng Of Corroded Archaeologıcal Sılver Coıns. Mediterranean Archaeology & Archaeometry, 16(1).https://doi.org/DOI: 10.5281/zenodo.35527
  • Referans2 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016b). Evaluatıng The Use Of Laser In Analysıs And Cleanıng Of The Islamıc Marıne Archaeologıcal Coıns Excavated From The Red Sea. International Journal of Conservation Science, 7(2).
  • Referans3 Al-Sadoun, A., & Abdel-Kareem, O. (2019). Authentıcatıon And Conservatıon Of Selected Metal Objects Excavated From Al-Sereın, Near Makkah, Saudı Arabıa. Mediterranean Archaeology and Archaeometry, 19(2), 23-38. https://doi.org/DOI:10.5281/zenodo.306600
  • Referans4 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016a). Evaluatıng Laser Cleanıng Of Corroded Archaeologıcal Sılver Coıns. Mediterranean Archaeology & Archaeometry, 16(1). https://doi.org/DOI: 10.5281/zenodo.35527
  • Referans5 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016b). Evaluatıng The Use Of Laser In Analysıs And Cleanıng Of The Islamıc Marıne Archaeologıcal Coıns Excavated From The Red Sea. International Journal of Conservation Science, 7(2).
  • Referans6 Al-Sadoun, A., & Abdel-Kareem, O. (2019). Authentıcatıon And Conservatıon Of Selected Metal Objects Excavated From Al-Sereın, Near Makkah, Saudı Arabıa. Mediterranean Archaeology and Archaeometry, 19(2), 23-38. https://doi.org/DOI:10.5281/zenodo.306600
  • Referans7 Antonopoulou-Athera, N., Kalathakis, C., Chatzitheodoridis, E., & Serafetinides, A. (2019). Theoretical and experimental approach on laser cleaning of coins. SN Applied Sciences, 1(3), 238. https://doi.org/https://doi.org/10.1007/s42452-019-0255-4
  • Referans8 Bilmes, G. M., Vallejo, J., Vera, C. C., & Garcia, M. E. (2018). High efficiencies for laser cleaning of glassware irradiated from the back: application to glassware historical objects. Applied Physics A, 124(4), 347. https://doi.org/https://doi.org/10.1007/s00339-018-1761-8 Referans9 Buccolieri, G., Nassisi, V., Torrisi, L., Buccolieri, A., Castellano, A., Di Giulio, M., Giuffreda, E., Delle Side, D., & Velardi, L. (2014). Analysis of selective laser cleaning of patina on bronze coins. Journal of Physics: Conference Series,
  • Referans10 Burmester, T., Meier, M., Haferkamp, H., Barcikowski, S., Bunte, J., & Ostendorf, A. (2005). Femtosecond laser cleaning of metallic cultural heritage and antique artworks. In Lasers in the Conservation of Artworks (pp. 61-69). Springer.
  • Referans11 Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., & Tünnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63(2), 109-115. https://doi.org/https://doi.org/10.1007/BF01567637
  • Referans12 Chillè, C., Papadakis, V. M., & Theodorakopoulos, C. (2020). An analytical evaluation of Er: YAG laser cleaning tests on a nineteenth century varnished painting. Microchemical Journal, 105086. https://doi.org/https://doi.org/10.1016/j.microc.2020.105086
  • Referans13 Craddock, P. (2009). Scientific investigation of copies, fakes, and forgeries. Routledge. https://doi.org/10.4324/9780080939001
  • Referans14 Dajnowski, B. A. (2013). Laser ablation cleaning of an underwater archaeological bronze spectacle plate from the HMS DeBraak shipwreck. Optics for Arts, Architecture, and Archaeology IV,
  • Referans15 Di Francia, E., Lahoz, R., Neff, D., Angelini, E., & Grassini, S. (2018). Laser cleaning of Cu-based artefacts: laser/corrosion products interaction. ACTA IMEKO, 7(3), 104-110. https://doi.org/DOI: 10.21014/acta_imeko.v7i3.610
  • Referans16 Di Turo, F. (2019). Limits and perspectives of archaeometric analysis of archaeological metals: A focus on the electrochemistry for studying ancient bronze coins. Journal of cultural heritage. https://doi.org/https://doi.org/10.1016/j.culher.2019.10.006
  • Referans17 Drakaki, E., Karydas, A., Klinkenberg, B., Kokkoris, M., Serafetinides, A., Stavrou, E., Vlastou, R., & Zarkadas, C. (2004). Laser cleaning on Roman coins. Applied Physics A, 79(4-6), 1111-1115. https://doi.org/DOI: 10.1007/s00339-004-2657-3
  • Referans18 Ersoy, T., Tunay, T., Uğuryol, M., Mavili, G., & Akturk, S. (2014). Femtosecond laser cleaning of historical paper with sizing. Journal of cultural heritage, 15(3), 258-265. https://doi.org/https://doi.org/10.1016/j.culher.2013.07.002
  • Referans19 Gamaly, E. G., Rode, A. V., Luther-Davies, B., & Tikhonchuk, V. T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of plasmas, 9(3), 949-957. https://doi.org/https://doi.org/10.1063/1.1447555
  • Referans20 Georgiou, S., Anglos, D., & Fotakis, C. (2008). Photons in the service of our past: lasers in the preservation of cultural heritage. Contemporary Physics, 49(1), 1-27. https://doi.org/https://doi.org/10.1080/00107510802038398
  • Referans21 Gondal, M. A., Nasr, M. M., Ahmed, Z., & Yamani, Z. H. (2009). Determination of trace elements in volcanic rock samples collected from Cenozoic lava eruption sites using LIBS. Journal of Environmental Science and Health Part A, 44(5), 528-535.https://doi.org/10.1080/10934520902720116
  • Referans22 Harmon, R. S., Remus, J., McMillan, N. J., McManus, C., Collins, L., Gottfried, J. L., DeLucia, F. C., & Miziolek, A. W. (2009). LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Applied Geochemistry, 24(6), 1125-1141. https://doi.org/https://doi.org/10.1016/j.apgeochem.2009.02.009
  • Referans23 Harmon, R. S., Russo, R. E., & Hark, R. R. (2013). Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 11-26.https://doi.org/10.1016/j.sab.2013.05.017
  • Referans24 Kalam, S. A., Rao, S. B. M., Jayananda, M., & Rao, S. V. (2020). Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials. Journal of Analytical Atomic Spectrometry, 35(12), 3007-3020.DOI https://doi.org/10.1039/D0JA00355G
  • Referans25 Koh, Y., & Sárady, I. (2003). Cleaning of corroded iron artefacts using pulsed TEA CO2-and Nd: YAG-lasers. Journal of cultural heritage, 4, 129-133. https://doi.org/https://doi.org/10.1016/S1296-2074(02)01140-8
  • Referans26 Korenberg, C., & Baldwin, A. (2006). Laser cleaning tests on archaeological copper alloys using an ND: YAG Laser. Laser Chemistry, 2006. https://doi.org/DOI: 10.1155/2006/75831
  • Referans27 Korte, F., Serbin, J., Koch, J., Egbert, A., Fallnich, C., Ostendorf, A., & Chichkov, B. (2003). Towards nanostructuring with femtosecond laser pulses. Applied Physics A, 77(2), 229-235. https://doi.org/https://doi.org/10.1007/s00339-003-2110-z
  • Referans28 Lasheras, R., Bello-Gálvez, C., & Anzano, J. (2010). Identification of polymers by libs using methods of correlation and normalized coordinates. Polymer testing, 29(8), 1057-1064.https://doi.org/10.1016/j.polymertesting.2010.07.011
  • Referans29 Liu, X., Du, D., & Mourou, G. (1997). Laser ablation and micromachining with ultrashort laser pulses. IEEE journal of quantum electronics, 33(10), 1706-1716. https://doi.org/DOI: 10.1109/3.631270
  • Referans30 Maharjan, N., Zhou, W., Zhou, Y., & Guan, Y. (2017). Femtosecond laser cleaning for aerospace manufacturing and remanufacturing. Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017 Conference on,
  • Referans31 Muhammed Shameem, K. M., Dhanada, V. S., Harikrishnan, S., George, S. D., Kartha, V. B., Santhosh, C., & Unnikrishnan, V. K. (2020). Echelle LIBS-Raman system: A versatile tool for mineralogical and archaeological applications. Talanta, 208, 120482. https://doi.org/https://doi.org/10.1016/j.talanta.2019.120482
  • Referans32 Nevin, A., Pouli, P., Georgiou, S., & Fotakis, C. (2007). Laser conservation of art. Nature Materials, 6(5), 320. https://doi.org/https://doi.org/10.1038/nmat1895
  • Referans33 Palomar, T., Oujja, M., Llorente, I., Barat, B. R., Cañamares, M., Cano, E., & Castillejo, M. (2016). Evaluation of laser cleaning for the restoration of tarnished silver artifacts. Applied Surface Science, 387, 118-127. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.06.017
  • Referans34 Petiti, C., Toniolo, L., Gulotta, D., Mariani, B., & Goidanich, S. (2020). Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment. Environmental Science and Pollution Research, 1-14. https://doi.org/https://doi.org/10.1007/s11356-020-07814-4
  • Referans35 Pini, R., Siano, S., Salimbeni, R., Pasquinucci, M., & Miccio, M. (2000). Tests of laser cleaning on archeological metal artefacts. Journal of cultural heritage, 1, S129-S137. https://doi.org/https://doi.org/10.1016/S1296-2074(00)00139-4
  • Referans36 Pouli, P., Oujja, M., & Castillejo, M. (2012). Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Applied Physics A, 106(2), 447-464. https://doi.org/https://doi.org/10.1007/s00339-011-6696-2
  • Referans37 Remus, J., Gottfried, J., Harmon, R., Draucker, A., Baron, D., & Yohe, R. (2010). Archaeological Applications of Laser-induced Breakdown Spectroscopy: An Example from the Coso Volcanic Field, California, Using Advanced Statistical Signal Processing Analysis. Applied Optics - APPL OPT, 49. https://doi.org/10.1364/AO.49.00C120
  • Referans38 Scott, D. A. (1994). An examination of the patina and corrosion morphology of some Roman bronzes. Journal of the American Institute for Conservation, 33(1), 1-23.https://doi.org/10.1179/019713694806066419
  • Referans39 Serafetinides, A., Drakaki, E., Fabrikesi, E., Kandyla, M., Zergioti, I., Vlachou-Mogire, C., Thomson, R., Kar, A., Boukos, N., & Karydas, A. (2009). Comparative evaluation of ultrafast laser beam interaction with the silvering in late Roman coins. O3A: Optics for Arts, Architecture, and Archaeology II. https://doi.org/10.1117/12.827244
  • Referans40 Siano, S., Agresti, J., Cacciari, I., Ciofini, D., Mascalchi, M., Osticioli, I., & Mencaglia, A. (2012). Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd: YAG lasers. Applied Physics A, 106(2), 419-446. https://doi.org/https://doi.org/10.1007/s00339-011-6690-8
  • Referans41 Siano, S., & Salimbeni, R. (2010). Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach. Accounts of chemical research, 43(6), 739-750. https://doi.org/https://doi.org/10.1021/ar900190f
  • Referans42 Strlič, M., Kolar, J., Šelih, V.-S., & Marinček, M. (2003). Surface modification during Nd: YAG (1064 nm) pulsed laser cleaning of organic fibrous materials. Applied Surface Science, 207(1-4), 236-245. https://doi.org/DOI: 10.1016/S0169-4332(02)01371-5
  • Referans43 Viljus, A., & Viljus, M. (2013). The conservation of early post-medieval period coins found in Estonia. Journal of Conservation and Museum Studies, 10(2). https://doi.org/http://doi.org/10.5334/jcms.1021204
  • Referans44 Waddington, W. H., Babelon, E., & Reinach, T. (1912). Recueil général des monnaies grecques d'Asie Mineure (Vol. 1). A. Forni Editore.https://www.oeaw.ac.at/resources/Record/993414005204498.
  • Referans45 Wickramasinghe, R. C. (2021). Femtosecond Laser Desorption Postionization Mass Spectrometry Imaging of Geological Samples University of Illinois at Chicago. https://www.proquest.com/dissertations-theses/femtosecond-laser-desorption-postionization-mass/docview/2610527818/se-2?accountid=16935
  • Referans46 Zanini, A., Trafeli, V., & Bartoli, L. (2018). The laser as a tool for the cleaning of Cultural Heritage. IOP Conference Series: Materials Science and Engineering, doi:10.1088/1757-899X/364/1/012078
Year 2022, Volume: 17 Issue: 2, 75 - 84, 30.06.2022

Abstract

References

  • Referans1 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016a). Evaluatıng Laser Cleanıng Of Corroded Archaeologıcal Sılver Coıns. Mediterranean Archaeology & Archaeometry, 16(1).https://doi.org/DOI: 10.5281/zenodo.35527
  • Referans2 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016b). Evaluatıng The Use Of Laser In Analysıs And Cleanıng Of The Islamıc Marıne Archaeologıcal Coıns Excavated From The Red Sea. International Journal of Conservation Science, 7(2).
  • Referans3 Al-Sadoun, A., & Abdel-Kareem, O. (2019). Authentıcatıon And Conservatıon Of Selected Metal Objects Excavated From Al-Sereın, Near Makkah, Saudı Arabıa. Mediterranean Archaeology and Archaeometry, 19(2), 23-38. https://doi.org/DOI:10.5281/zenodo.306600
  • Referans4 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016a). Evaluatıng Laser Cleanıng Of Corroded Archaeologıcal Sılver Coıns. Mediterranean Archaeology & Archaeometry, 16(1). https://doi.org/DOI: 10.5281/zenodo.35527
  • Referans5 Abdel-Kareem, O., Al-Zahrani, A., Khedr, A., & Harith, M. A. (2016b). Evaluatıng The Use Of Laser In Analysıs And Cleanıng Of The Islamıc Marıne Archaeologıcal Coıns Excavated From The Red Sea. International Journal of Conservation Science, 7(2).
  • Referans6 Al-Sadoun, A., & Abdel-Kareem, O. (2019). Authentıcatıon And Conservatıon Of Selected Metal Objects Excavated From Al-Sereın, Near Makkah, Saudı Arabıa. Mediterranean Archaeology and Archaeometry, 19(2), 23-38. https://doi.org/DOI:10.5281/zenodo.306600
  • Referans7 Antonopoulou-Athera, N., Kalathakis, C., Chatzitheodoridis, E., & Serafetinides, A. (2019). Theoretical and experimental approach on laser cleaning of coins. SN Applied Sciences, 1(3), 238. https://doi.org/https://doi.org/10.1007/s42452-019-0255-4
  • Referans8 Bilmes, G. M., Vallejo, J., Vera, C. C., & Garcia, M. E. (2018). High efficiencies for laser cleaning of glassware irradiated from the back: application to glassware historical objects. Applied Physics A, 124(4), 347. https://doi.org/https://doi.org/10.1007/s00339-018-1761-8 Referans9 Buccolieri, G., Nassisi, V., Torrisi, L., Buccolieri, A., Castellano, A., Di Giulio, M., Giuffreda, E., Delle Side, D., & Velardi, L. (2014). Analysis of selective laser cleaning of patina on bronze coins. Journal of Physics: Conference Series,
  • Referans10 Burmester, T., Meier, M., Haferkamp, H., Barcikowski, S., Bunte, J., & Ostendorf, A. (2005). Femtosecond laser cleaning of metallic cultural heritage and antique artworks. In Lasers in the Conservation of Artworks (pp. 61-69). Springer.
  • Referans11 Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., & Tünnermann, A. (1996). Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63(2), 109-115. https://doi.org/https://doi.org/10.1007/BF01567637
  • Referans12 Chillè, C., Papadakis, V. M., & Theodorakopoulos, C. (2020). An analytical evaluation of Er: YAG laser cleaning tests on a nineteenth century varnished painting. Microchemical Journal, 105086. https://doi.org/https://doi.org/10.1016/j.microc.2020.105086
  • Referans13 Craddock, P. (2009). Scientific investigation of copies, fakes, and forgeries. Routledge. https://doi.org/10.4324/9780080939001
  • Referans14 Dajnowski, B. A. (2013). Laser ablation cleaning of an underwater archaeological bronze spectacle plate from the HMS DeBraak shipwreck. Optics for Arts, Architecture, and Archaeology IV,
  • Referans15 Di Francia, E., Lahoz, R., Neff, D., Angelini, E., & Grassini, S. (2018). Laser cleaning of Cu-based artefacts: laser/corrosion products interaction. ACTA IMEKO, 7(3), 104-110. https://doi.org/DOI: 10.21014/acta_imeko.v7i3.610
  • Referans16 Di Turo, F. (2019). Limits and perspectives of archaeometric analysis of archaeological metals: A focus on the electrochemistry for studying ancient bronze coins. Journal of cultural heritage. https://doi.org/https://doi.org/10.1016/j.culher.2019.10.006
  • Referans17 Drakaki, E., Karydas, A., Klinkenberg, B., Kokkoris, M., Serafetinides, A., Stavrou, E., Vlastou, R., & Zarkadas, C. (2004). Laser cleaning on Roman coins. Applied Physics A, 79(4-6), 1111-1115. https://doi.org/DOI: 10.1007/s00339-004-2657-3
  • Referans18 Ersoy, T., Tunay, T., Uğuryol, M., Mavili, G., & Akturk, S. (2014). Femtosecond laser cleaning of historical paper with sizing. Journal of cultural heritage, 15(3), 258-265. https://doi.org/https://doi.org/10.1016/j.culher.2013.07.002
  • Referans19 Gamaly, E. G., Rode, A. V., Luther-Davies, B., & Tikhonchuk, V. T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Physics of plasmas, 9(3), 949-957. https://doi.org/https://doi.org/10.1063/1.1447555
  • Referans20 Georgiou, S., Anglos, D., & Fotakis, C. (2008). Photons in the service of our past: lasers in the preservation of cultural heritage. Contemporary Physics, 49(1), 1-27. https://doi.org/https://doi.org/10.1080/00107510802038398
  • Referans21 Gondal, M. A., Nasr, M. M., Ahmed, Z., & Yamani, Z. H. (2009). Determination of trace elements in volcanic rock samples collected from Cenozoic lava eruption sites using LIBS. Journal of Environmental Science and Health Part A, 44(5), 528-535.https://doi.org/10.1080/10934520902720116
  • Referans22 Harmon, R. S., Remus, J., McMillan, N. J., McManus, C., Collins, L., Gottfried, J. L., DeLucia, F. C., & Miziolek, A. W. (2009). LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals. Applied Geochemistry, 24(6), 1125-1141. https://doi.org/https://doi.org/10.1016/j.apgeochem.2009.02.009
  • Referans23 Harmon, R. S., Russo, R. E., & Hark, R. R. (2013). Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochimica Acta Part B: Atomic Spectroscopy, 87, 11-26.https://doi.org/10.1016/j.sab.2013.05.017
  • Referans24 Kalam, S. A., Rao, S. B. M., Jayananda, M., & Rao, S. V. (2020). Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials. Journal of Analytical Atomic Spectrometry, 35(12), 3007-3020.DOI https://doi.org/10.1039/D0JA00355G
  • Referans25 Koh, Y., & Sárady, I. (2003). Cleaning of corroded iron artefacts using pulsed TEA CO2-and Nd: YAG-lasers. Journal of cultural heritage, 4, 129-133. https://doi.org/https://doi.org/10.1016/S1296-2074(02)01140-8
  • Referans26 Korenberg, C., & Baldwin, A. (2006). Laser cleaning tests on archaeological copper alloys using an ND: YAG Laser. Laser Chemistry, 2006. https://doi.org/DOI: 10.1155/2006/75831
  • Referans27 Korte, F., Serbin, J., Koch, J., Egbert, A., Fallnich, C., Ostendorf, A., & Chichkov, B. (2003). Towards nanostructuring with femtosecond laser pulses. Applied Physics A, 77(2), 229-235. https://doi.org/https://doi.org/10.1007/s00339-003-2110-z
  • Referans28 Lasheras, R., Bello-Gálvez, C., & Anzano, J. (2010). Identification of polymers by libs using methods of correlation and normalized coordinates. Polymer testing, 29(8), 1057-1064.https://doi.org/10.1016/j.polymertesting.2010.07.011
  • Referans29 Liu, X., Du, D., & Mourou, G. (1997). Laser ablation and micromachining with ultrashort laser pulses. IEEE journal of quantum electronics, 33(10), 1706-1716. https://doi.org/DOI: 10.1109/3.631270
  • Referans30 Maharjan, N., Zhou, W., Zhou, Y., & Guan, Y. (2017). Femtosecond laser cleaning for aerospace manufacturing and remanufacturing. Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017 Conference on,
  • Referans31 Muhammed Shameem, K. M., Dhanada, V. S., Harikrishnan, S., George, S. D., Kartha, V. B., Santhosh, C., & Unnikrishnan, V. K. (2020). Echelle LIBS-Raman system: A versatile tool for mineralogical and archaeological applications. Talanta, 208, 120482. https://doi.org/https://doi.org/10.1016/j.talanta.2019.120482
  • Referans32 Nevin, A., Pouli, P., Georgiou, S., & Fotakis, C. (2007). Laser conservation of art. Nature Materials, 6(5), 320. https://doi.org/https://doi.org/10.1038/nmat1895
  • Referans33 Palomar, T., Oujja, M., Llorente, I., Barat, B. R., Cañamares, M., Cano, E., & Castillejo, M. (2016). Evaluation of laser cleaning for the restoration of tarnished silver artifacts. Applied Surface Science, 387, 118-127. https://doi.org/https://doi.org/10.1016/j.apsusc.2016.06.017
  • Referans34 Petiti, C., Toniolo, L., Gulotta, D., Mariani, B., & Goidanich, S. (2020). Effects of cleaning procedures on the long-term corrosion behavior of bronze artifacts of the cultural heritage in outdoor environment. Environmental Science and Pollution Research, 1-14. https://doi.org/https://doi.org/10.1007/s11356-020-07814-4
  • Referans35 Pini, R., Siano, S., Salimbeni, R., Pasquinucci, M., & Miccio, M. (2000). Tests of laser cleaning on archeological metal artefacts. Journal of cultural heritage, 1, S129-S137. https://doi.org/https://doi.org/10.1016/S1296-2074(00)00139-4
  • Referans36 Pouli, P., Oujja, M., & Castillejo, M. (2012). Practical issues in laser cleaning of stone and painted artefacts: optimisation procedures and side effects. Applied Physics A, 106(2), 447-464. https://doi.org/https://doi.org/10.1007/s00339-011-6696-2
  • Referans37 Remus, J., Gottfried, J., Harmon, R., Draucker, A., Baron, D., & Yohe, R. (2010). Archaeological Applications of Laser-induced Breakdown Spectroscopy: An Example from the Coso Volcanic Field, California, Using Advanced Statistical Signal Processing Analysis. Applied Optics - APPL OPT, 49. https://doi.org/10.1364/AO.49.00C120
  • Referans38 Scott, D. A. (1994). An examination of the patina and corrosion morphology of some Roman bronzes. Journal of the American Institute for Conservation, 33(1), 1-23.https://doi.org/10.1179/019713694806066419
  • Referans39 Serafetinides, A., Drakaki, E., Fabrikesi, E., Kandyla, M., Zergioti, I., Vlachou-Mogire, C., Thomson, R., Kar, A., Boukos, N., & Karydas, A. (2009). Comparative evaluation of ultrafast laser beam interaction with the silvering in late Roman coins. O3A: Optics for Arts, Architecture, and Archaeology II. https://doi.org/10.1117/12.827244
  • Referans40 Siano, S., Agresti, J., Cacciari, I., Ciofini, D., Mascalchi, M., Osticioli, I., & Mencaglia, A. (2012). Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd: YAG lasers. Applied Physics A, 106(2), 419-446. https://doi.org/https://doi.org/10.1007/s00339-011-6690-8
  • Referans41 Siano, S., & Salimbeni, R. (2010). Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach. Accounts of chemical research, 43(6), 739-750. https://doi.org/https://doi.org/10.1021/ar900190f
  • Referans42 Strlič, M., Kolar, J., Šelih, V.-S., & Marinček, M. (2003). Surface modification during Nd: YAG (1064 nm) pulsed laser cleaning of organic fibrous materials. Applied Surface Science, 207(1-4), 236-245. https://doi.org/DOI: 10.1016/S0169-4332(02)01371-5
  • Referans43 Viljus, A., & Viljus, M. (2013). The conservation of early post-medieval period coins found in Estonia. Journal of Conservation and Museum Studies, 10(2). https://doi.org/http://doi.org/10.5334/jcms.1021204
  • Referans44 Waddington, W. H., Babelon, E., & Reinach, T. (1912). Recueil général des monnaies grecques d'Asie Mineure (Vol. 1). A. Forni Editore.https://www.oeaw.ac.at/resources/Record/993414005204498.
  • Referans45 Wickramasinghe, R. C. (2021). Femtosecond Laser Desorption Postionization Mass Spectrometry Imaging of Geological Samples University of Illinois at Chicago. https://www.proquest.com/dissertations-theses/femtosecond-laser-desorption-postionization-mass/docview/2610527818/se-2?accountid=16935
  • Referans46 Zanini, A., Trafeli, V., & Bartoli, L. (2018). The laser as a tool for the cleaning of Cultural Heritage. IOP Conference Series: Materials Science and Engineering, doi:10.1088/1757-899X/364/1/012078
There are 45 citations in total.

Details

Primary Language English
Subjects Environment and Culture, General Geology
Journal Section Articles
Authors

Gülin Gençoğlu Korkmaz 0000-0003-0185-2806

Yasemin Gündoğdu 0000-0003-2020-9533

İlker Işık

Abuzer Kızıl

Serap Yiğit Gezgin

Hamdi Şükür Kılıç 0000-0002-7546-4243

Publication Date June 30, 2022
Acceptance Date June 18, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Gençoğlu Korkmaz, G., Gündoğdu, Y., Işık, İ., Kızıl, A., et al. (2022). Femtosecond Laser Cleaning of Archaeological Cultural Assets. Journal of International Environmental Application and Science, 17(2), 75-84.
AMA Gençoğlu Korkmaz G, Gündoğdu Y, Işık İ, Kızıl A, Yiğit Gezgin S, Kılıç HŞ. Femtosecond Laser Cleaning of Archaeological Cultural Assets. J. Int. Environmental Application & Science. June 2022;17(2):75-84.
Chicago Gençoğlu Korkmaz, Gülin, Yasemin Gündoğdu, İlker Işık, Abuzer Kızıl, Serap Yiğit Gezgin, and Hamdi Şükür Kılıç. “Femtosecond Laser Cleaning of Archaeological Cultural Assets”. Journal of International Environmental Application and Science 17, no. 2 (June 2022): 75-84.
EndNote Gençoğlu Korkmaz G, Gündoğdu Y, Işık İ, Kızıl A, Yiğit Gezgin S, Kılıç HŞ (June 1, 2022) Femtosecond Laser Cleaning of Archaeological Cultural Assets. Journal of International Environmental Application and Science 17 2 75–84.
IEEE G. Gençoğlu Korkmaz, Y. Gündoğdu, İ. Işık, A. Kızıl, S. Yiğit Gezgin, and H. Ş. Kılıç, “Femtosecond Laser Cleaning of Archaeological Cultural Assets”, J. Int. Environmental Application & Science, vol. 17, no. 2, pp. 75–84, 2022.
ISNAD Gençoğlu Korkmaz, Gülin et al. “Femtosecond Laser Cleaning of Archaeological Cultural Assets”. Journal of International Environmental Application and Science 17/2 (June 2022), 75-84.
JAMA Gençoğlu Korkmaz G, Gündoğdu Y, Işık İ, Kızıl A, Yiğit Gezgin S, Kılıç HŞ. Femtosecond Laser Cleaning of Archaeological Cultural Assets. J. Int. Environmental Application & Science. 2022;17:75–84.
MLA Gençoğlu Korkmaz, Gülin et al. “Femtosecond Laser Cleaning of Archaeological Cultural Assets”. Journal of International Environmental Application and Science, vol. 17, no. 2, 2022, pp. 75-84.
Vancouver Gençoğlu Korkmaz G, Gündoğdu Y, Işık İ, Kızıl A, Yiğit Gezgin S, Kılıç HŞ. Femtosecond Laser Cleaning of Archaeological Cultural Assets. J. Int. Environmental Application & Science. 2022;17(2):75-84.

“Journal of International Environmental Application and Science”