Research Article
BibTex RIS Cite

Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem

Year 2019, Volume: 9 Issue: 1, 500 - 511, 01.03.2019
https://doi.org/10.21597/jist.472241

Abstract

Bu
çalışmada aril aldehitlerin malonitril ile katalizörsüz ortamda, sadece çözücü olarak su/metanol karışımı
kullanılmasıyla gerçekleştirdiği tepkime sonucu ilgili
benzilidenmalononitril türevleri 15 dakikada oda sıcaklığında kantitatif
verimlerle elde edilmiştir. Knoevenagel kondenzasyonu ile
benzilidenmalononitril bileşiklerinin eldesi ile ilgili literatürde birçok
yöntem bulunmasına rağmen, bu çalışmada herhangi bir katalizör kullanılmaması
bu çalışmayı yeşil kimya yasalarına uyan etkin bir yöntem olarak ön plana
çıkarmaktadır. 

References

  • Azizi N, Aryanasab F, Torkiyan L, Ziyaei A, Saidi MR, 2006. One-pot synthesis of dithiocarbamates accelerated in water. The Journal of Organic Chemistry, 71 (9): 3634-3635.
  • Chaudhuri H, Gupta R, Dash S, 2018. Efficient Synthesis of Branched Polyamine Based Thermally Stable Heterogeneous Catalyst for Knoevenagel Condensation at Room Temperature. Catalysis Letters, 148: 1703–1713.
  • Cho H, Madden R, Nisanci B, Török B, 2015. The Paal–Knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and N-substituted pyrroles. Green Chemistry, 17 (2): 1088-1099.
  • Cunha S, da Silva TL, 2009. One-pot and catalyst-free synthesis of thiosemicarbazones via multicomponent coupling reactions. Tetrahedron Letters, 50 (18): 2090-2093.
  • Farzaneh F, Maleki MK, Rashtizadeh E, 2017. Expedient catalytic access to Knöevenagel condensation using Sr3Al2O6 nanocomposite in room temperature. Journal of Cluster Science, 28 (6): 3253-3263.
  • Goa Y, Wu P, Tatsumi T, 2004. Liquid-phase Knoevenagel reactions over modified basic microporous titanosilicate ETS-10. Journal of Catalysis, 224 (1): 107-114.
  • Jenner G, 2001. Steric effects in high pressure Knoevenagel reactions. Tetrahedron Letters, 42 (2): 243-245.
  • Mallouk S, Bougrin K, Laghzizil A, Benhida R, 2010. Microwave-assisted and efficient solvent-free knoevenagel condensation. A sustainable protocol using porous calcium hydroxyapatite as catalyst. Molecules, 15 (2): 813-823.
  • Martínez F, Orcajo G, Briones D, Leo P, Calleja G, 2017. Catalytic advantages of NH2-modified MIL-53 (Al) materials for Knoevenagel condensation reaction. Microporous and Mesoporous Materials, 246: 43-50.
  • Moemeni MH, Amrollahi MA, Tamaddon F, 2015. A facile catalyst-free Knoevenagel condensation of pyridinecarbaldehydes and active methylene compounds. Bulgarian Chemical Communications, 47 (1): 7-12.
  • Rajabi F, Fayyaz F, Luque R, 2017. Cytosine-functionalized SBA-15 mesoporous nanomaterials: Synthesis, characterization and catalytic applications. Microporous and Mesoporous Materials, 253: 64-70.
  • Rambabu D, Ashraf M, Gupta A, Dhir A, 2017. Mn-MOF@ Pi composite: synthesis, characterisation and an efficient catalyst for the Knoevenagel condensation reaction. Tetrahedron Letters, 58 (50): 4691-4694.
  • Polshettiwar V, Varma RS, 2008. Ring-fused aminals: catalyst and solvent-free microwave-assisted α-amination of nitrogen heterocycles. Tetrahedron Letters, 49 (50): 7165-7167.
  • Sakthivel B, Dhakshinamoorthy A, 2017. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction. Journal of Colloid and Interface Science, 485: 75-80.
  • Shiri L, Rahmati S, Ramezani Nejad Z, Kazemi M. 2017. Synthesis and characterization of bromine source immobilized on diethylenetriamine‐functionalized magnetic nanoparticles: A novel, versatile and highly efficient reusable catalyst for organic synthesis. Applied Organometallic Chemistry, 31 (9): e3687.
  • Shirini F, Daneshvar N, 2016. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions. RSC Advances, 6 (111): 110190-110205.
  • Solan A, Nişanci B, Belcher M, Young J, Schaefer C, Wheeler KA, Török B, Dembinski R, 2014. Catalyst-free chemo-/regio-/stereo-selective amination of alk-3-ynones. Synthesis of 1, 5-benzodiazepines and 3-amino-2-alkenones. Green Chemistry, 16 (3): 1120-1124.
  • Taher A, Lee DJ, Lee BK, Lee IM, 2016. Amine-functionalized Metal-Organic Frameworks: An Efficient and Recyclable Heterogeneous Catalyst for the Knoevenagel Condensation Reaction. Synlett, 27 (09): 1433-1437.
  • Tamami B, Fadavi A, 2005. Amino group immobilized on polyacrylamide: An efficient heterogeneous catalyst for the Knoevenagel reaction in solvent-free and aqueous media. Catalysis Communications, 6 (11): 747-751.
  • Xu H, Pan L, Fang X, Liu B, Zhang W, Lu M, Xu Y, Ding T, Chang H, 2017. Knoevenagel condensation catalyzed by novel Nmm-based ionic liquids in water. Tetrahedron Letters, 58 (24): 2360-2365.
  • Yadav JS, Reddy BVS, Basak AK, Visali B, Narsaiah AV, Nagaiah K, 2004. Phosphane‐catalyzed Knoevenagel condensation: A facile synthesis of α‐cyanoacrylates and α‐cyanoacrylonitriles. European Journal of Organic Chemistry, (3): 546-551.
  • Young J, Schäfer C, Solan A, Baldrica A, Belcher M, Nişanci B, Wheeler KA, Trivedi ER, Török B, Dembinski R, 2016. Regioselective “hydroamination” of alk-3-ynones with non-symmetrical o-phenylenediamines. Synthesis of diversely substituted 3 H-1, 5-benzodiazepines via (Z)-3-amino-2-alkenones. RSC Advances, 6 (108): 107081-107093.
  • Zhang H, Han M, Chen T, Xu L, Yu L, 2017. Poly (N-isopropylacrylamide-co-L-proline)-catalyzed Claisen–Schmidt and Knoevenagel condensations: Unexpected enhanced catalytic activity of the polymer catalyst. RSC Advances, 7 (76): 48214-48221.

Catalyst Free Knoevenagel Condensation of Benzaldehyde Derivatives with Malononitrile: A Facile and Compatible Method with Green Chemistry Rules for the Synthesis of Dicyano Compounds

Year 2019, Volume: 9 Issue: 1, 500 - 511, 01.03.2019
https://doi.org/10.21597/jist.472241

Abstract

In
this study, as a result of the reaction of aryl aldehydes with
malononitrile in a catalyst-free
condition by using only water/methanol mixture as a solvent, the corresponding
benzylidenemalononitrile derivatives were obtained in quantitative yields at
room temperature just in 15 minutes. Although many methods have been found in
the literature about Knoevenagel Condensation, addressed herein a catalyst free
methodology which is in harmony with the green chemistry rules makes this work
effective than the others. 

References

  • Azizi N, Aryanasab F, Torkiyan L, Ziyaei A, Saidi MR, 2006. One-pot synthesis of dithiocarbamates accelerated in water. The Journal of Organic Chemistry, 71 (9): 3634-3635.
  • Chaudhuri H, Gupta R, Dash S, 2018. Efficient Synthesis of Branched Polyamine Based Thermally Stable Heterogeneous Catalyst for Knoevenagel Condensation at Room Temperature. Catalysis Letters, 148: 1703–1713.
  • Cho H, Madden R, Nisanci B, Török B, 2015. The Paal–Knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and N-substituted pyrroles. Green Chemistry, 17 (2): 1088-1099.
  • Cunha S, da Silva TL, 2009. One-pot and catalyst-free synthesis of thiosemicarbazones via multicomponent coupling reactions. Tetrahedron Letters, 50 (18): 2090-2093.
  • Farzaneh F, Maleki MK, Rashtizadeh E, 2017. Expedient catalytic access to Knöevenagel condensation using Sr3Al2O6 nanocomposite in room temperature. Journal of Cluster Science, 28 (6): 3253-3263.
  • Goa Y, Wu P, Tatsumi T, 2004. Liquid-phase Knoevenagel reactions over modified basic microporous titanosilicate ETS-10. Journal of Catalysis, 224 (1): 107-114.
  • Jenner G, 2001. Steric effects in high pressure Knoevenagel reactions. Tetrahedron Letters, 42 (2): 243-245.
  • Mallouk S, Bougrin K, Laghzizil A, Benhida R, 2010. Microwave-assisted and efficient solvent-free knoevenagel condensation. A sustainable protocol using porous calcium hydroxyapatite as catalyst. Molecules, 15 (2): 813-823.
  • Martínez F, Orcajo G, Briones D, Leo P, Calleja G, 2017. Catalytic advantages of NH2-modified MIL-53 (Al) materials for Knoevenagel condensation reaction. Microporous and Mesoporous Materials, 246: 43-50.
  • Moemeni MH, Amrollahi MA, Tamaddon F, 2015. A facile catalyst-free Knoevenagel condensation of pyridinecarbaldehydes and active methylene compounds. Bulgarian Chemical Communications, 47 (1): 7-12.
  • Rajabi F, Fayyaz F, Luque R, 2017. Cytosine-functionalized SBA-15 mesoporous nanomaterials: Synthesis, characterization and catalytic applications. Microporous and Mesoporous Materials, 253: 64-70.
  • Rambabu D, Ashraf M, Gupta A, Dhir A, 2017. Mn-MOF@ Pi composite: synthesis, characterisation and an efficient catalyst for the Knoevenagel condensation reaction. Tetrahedron Letters, 58 (50): 4691-4694.
  • Polshettiwar V, Varma RS, 2008. Ring-fused aminals: catalyst and solvent-free microwave-assisted α-amination of nitrogen heterocycles. Tetrahedron Letters, 49 (50): 7165-7167.
  • Sakthivel B, Dhakshinamoorthy A, 2017. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction. Journal of Colloid and Interface Science, 485: 75-80.
  • Shiri L, Rahmati S, Ramezani Nejad Z, Kazemi M. 2017. Synthesis and characterization of bromine source immobilized on diethylenetriamine‐functionalized magnetic nanoparticles: A novel, versatile and highly efficient reusable catalyst for organic synthesis. Applied Organometallic Chemistry, 31 (9): e3687.
  • Shirini F, Daneshvar N, 2016. Introduction of taurine (2-aminoethanesulfonic acid) as a green bio-organic catalyst for the promotion of organic reactions under green conditions. RSC Advances, 6 (111): 110190-110205.
  • Solan A, Nişanci B, Belcher M, Young J, Schaefer C, Wheeler KA, Török B, Dembinski R, 2014. Catalyst-free chemo-/regio-/stereo-selective amination of alk-3-ynones. Synthesis of 1, 5-benzodiazepines and 3-amino-2-alkenones. Green Chemistry, 16 (3): 1120-1124.
  • Taher A, Lee DJ, Lee BK, Lee IM, 2016. Amine-functionalized Metal-Organic Frameworks: An Efficient and Recyclable Heterogeneous Catalyst for the Knoevenagel Condensation Reaction. Synlett, 27 (09): 1433-1437.
  • Tamami B, Fadavi A, 2005. Amino group immobilized on polyacrylamide: An efficient heterogeneous catalyst for the Knoevenagel reaction in solvent-free and aqueous media. Catalysis Communications, 6 (11): 747-751.
  • Xu H, Pan L, Fang X, Liu B, Zhang W, Lu M, Xu Y, Ding T, Chang H, 2017. Knoevenagel condensation catalyzed by novel Nmm-based ionic liquids in water. Tetrahedron Letters, 58 (24): 2360-2365.
  • Yadav JS, Reddy BVS, Basak AK, Visali B, Narsaiah AV, Nagaiah K, 2004. Phosphane‐catalyzed Knoevenagel condensation: A facile synthesis of α‐cyanoacrylates and α‐cyanoacrylonitriles. European Journal of Organic Chemistry, (3): 546-551.
  • Young J, Schäfer C, Solan A, Baldrica A, Belcher M, Nişanci B, Wheeler KA, Trivedi ER, Török B, Dembinski R, 2016. Regioselective “hydroamination” of alk-3-ynones with non-symmetrical o-phenylenediamines. Synthesis of diversely substituted 3 H-1, 5-benzodiazepines via (Z)-3-amino-2-alkenones. RSC Advances, 6 (108): 107081-107093.
  • Zhang H, Han M, Chen T, Xu L, Yu L, 2017. Poly (N-isopropylacrylamide-co-L-proline)-catalyzed Claisen–Schmidt and Knoevenagel condensations: Unexpected enhanced catalytic activity of the polymer catalyst. RSC Advances, 7 (76): 48214-48221.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Bilal Nişancı 0000-0003-4290-1539

Publication Date March 1, 2019
Submission Date October 19, 2018
Acceptance Date November 19, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Nişancı, B. (2019). Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem. Journal of the Institute of Science and Technology, 9(1), 500-511. https://doi.org/10.21597/jist.472241
AMA Nişancı B. Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem. J. Inst. Sci. and Tech. March 2019;9(1):500-511. doi:10.21597/jist.472241
Chicago Nişancı, Bilal. “Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem”. Journal of the Institute of Science and Technology 9, no. 1 (March 2019): 500-511. https://doi.org/10.21597/jist.472241.
EndNote Nişancı B (March 1, 2019) Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem. Journal of the Institute of Science and Technology 9 1 500–511.
IEEE B. Nişancı, “Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem”, J. Inst. Sci. and Tech., vol. 9, no. 1, pp. 500–511, 2019, doi: 10.21597/jist.472241.
ISNAD Nişancı, Bilal. “Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem”. Journal of the Institute of Science and Technology 9/1 (March 2019), 500-511. https://doi.org/10.21597/jist.472241.
JAMA Nişancı B. Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem. J. Inst. Sci. and Tech. 2019;9:500–511.
MLA Nişancı, Bilal. “Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem”. Journal of the Institute of Science and Technology, vol. 9, no. 1, 2019, pp. 500-11, doi:10.21597/jist.472241.
Vancouver Nişancı B. Katalizörsüz Ortamda Benzaldehit Türevlerinin Malononitril Eşliğinde Knoevenagel Kondenzasyonu: Disiyano Bileşiklerinin Sentezi İçin Yeşil Kimya Yasalarına Uygun Etkin Bir Yöntem. J. Inst. Sci. and Tech. 2019;9(1):500-11.