Research Article
BibTex RIS Cite

Ditiyofosfatların Bir Türevinin Elektronik ve Termodinamik Özellikleri

Year 2019, Volume: 9 Issue: 2, 780 - 789, 01.06.2019
https://doi.org/10.21597/jist.442911

Abstract

Bu çalışmada, ditiyofosfat moleküllerinin bir türevi olan [+HN(C2H5)3][CH3CHOC6H3(CF3)2)(CH3OC6H4)PS2-] molekülünün taban durumu termodinamik özellikleri (Isı kapasitesi, Entropi, Entalpi Gibbs ve Thermal enerji) ve öncü moleküler orbitalleri kuantum kimyasal hesaplama tekniklerinden olan yoğunluk fonksiyonel teorisi (DFT) B3LYP ve Hartree-Fock (HF) metodlarıyla, 6-31G(d) baz seti kullanılarak incelenmiştir. Bunlara ek olarak bileşiğin öncü moleküler orbitalleri analiz edilmiştir. Bileşiğe ait elektrostatik potansiyel yüzey haritası kullanılarak, bileşiğin aktivitesi ve yük yoğunluğu incelenmiştir.

References

  • Alberti E, Ardizzoia G, Brenna S, Castelli F, Galli S, Maspero A, 2007. The synthesis of a new dithiophosphonic acid and its coordination properties toward Ni (II): A combined NMR and X-ray diffraction study. Polyhedron, 26(5): 958-966.
  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R, 1987. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (12): S1-S19.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2000. Ring‐Opening of Lawesson’s Reagent: New Syntheses of Phosphono‐and Amidophosphono‐Dithioato Complexes− Structural and CP‐MAS 31P‐NMR Characterization of [p‐CH3OPh (X) PS2] 2M (X= MeO, iPrNH; M= NiII, PdII, and PtII). European Journal of Inorganic Chemistry, 2000(10): 2239-2244.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2001. Reactivity of phosphonodithioato Ni II complexes: solution equilibria, solid state studies and theoretical calculations on the adduct formation with some pyridine derivatives. Journal of the Chemical Society, Dalton Transactions, (18): 2671-2677.
  • ASIF M, 2018. REVIEW ON TO FREE RADICALS, ANTIOXIDANTS AND BRIEF OVERVIEW OF OXIMES. International Journal of Current Research in Applied Chemistry & Chemical Engineering [ISSN: 2581-5385 (online)], 2(1).
  • Aydemir C, Solak S, Acar Doganlı G, Sensoy T, Arar D, Bozbeyoglu N, Mercan Dogan N, Lönnecke P, Hey-Hawkins E, Sekerci M, 2015. Synthesis, Characterization, and Antibacterial Activity of Dithiophosphonates and Amidodithiophosphonates. Phosphorus, Sulfur, and Silicon and the Related Elements, 190(3): 300-309.
  • Bayrakdar A, Kart H, Elcin S, Deligoz H, Karabacak M, 2015. Synthesis and DFT calculation of a novel 5, 17-di (2-antracenylazo)-25, 27-di (ethoxycarbonylmethoxy)-26, 28-dihydroxycalix [4] arene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 607-617.
  • Bellamy LJ. 1964. The infra-red spectra of complex molecules.
  • Chermette H, 1998. Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coordination chemistry reviews, 178: 699-721.
  • Chidangil S, Shukla MK, Mishra PC, 1998. A molecular electrostatic potential mapping study of some fluoroquinolone anti-bacterial agents. Molecular modeling annual, 4(8): 250-258.
  • Corminboeuf C, Tran F, Weber J, 2006. The role of density functional theory in chemistry: Some historical landmarks and applications to zeolites. Journal of Molecular Structure: THEOCHEM, 762(1): 1-7.
  • Foresman J,Frish E, 1996. Exploring chemistry. Gaussian Inc., Pittsburg, USA.
  • Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, 2009. Gaussian 09, rev. D. 01. Gaussian Inc., Wallingford CT.
  • Gataulina AR, Safin DA, Gimadiev TR, Pinus MV, 2008. Complexes of podand-containing bis (dithiophosphonate) ligands with cobalt (II), nickel (II) and cadmium (II): recognition of CH2Cl2. Transition Metal Chemistry, 33(7): 921.
  • Gray IP, Milton HL, Slawin AM, Woollins JD, 2003. Synthesis and structure of [Fc (RO) PS 2]− complexes. Dalton Transactions, (17): 3450-3457.
  • Gray IP, Slawin AM, Woollins JD, 2004. Synthesis and structure of [An (RO) PS 2]− complexes. Dalton Transactions, (16): 2477-2486.
  • Karabacak M, Asiri A, Al-Youbi A, Qusti A, Cinar M, 2014. Identification of structural and spectral features of synthesized cyano-stilbene dye derivatives: A comparative experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120: 144-150.
  • Karabacak M, Çoruh A, Kurt M, 2008. FT-IR, FT-Raman, NMR spectra, and molecular structure investigation of 2, 3-dibromo-N-methylmaleimide: A combined experimental and theoretical study. Journal of Molecular Structure, 892(1): 125-131.
  • Karakus M, 2011. Synthesis and Characterization of Chiral Gold (I) Phosphine Complexes with New Dithiophosphorus Ligands. Phosphorus, Sulfur, and Silicon and the Related Elements, 186(7): 1523-1530.
  • Karakus M, Kara I, Çelik Ö, Orujalipoor I, İde S, Yilmaz H, 2018. Synthesis, characterization, single crystal structure and theoretical studies of trans-Ni (II)-complex with dithiophosphonate ligand. Journal of Molecular Structure, 1163: 128-136.
  • Karakus M, Lönnecke P, Hey-Hawkins E, 2004. Zwitterionic ferrocenyldithiophosphonates: the molecular structure of [FcP (S) S (OCH 2 CH 2 NH 2 Me)][Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Polyhedron, 23(14): 2281-2284.
  • Karakus M, Lönnecke P, Hildebrand M, Hey‐Hawkins E, 2011. Chiral Heterobimetallic Gold (I) Ferrocenyldithiophosphonato Complexes. Zeitschrift für anorganische und allgemeine Chemie, 637(7‐8): 983-987.
  • Karakus M, Solak S, Hökelek T, Dal H, Bayrakdar A, Kart SÖ, Karabacak M, Kart H, 2014. Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122: 582-590.
  • Kosar B,Albayrak C, 2011. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1): 160-167.
  • Koşar B, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O, 2010. (E)-3-[(3-(Trifluoromethyl) phenylimino) methyl] benzene-1, 2-diol: X-ray and DFT calculated structures. Turkish Journal of Chemistry, 34(3): 481-487.
  • Liu S-L, Wang X-Y, Duan T, Leung W-H, Zhang Q-F, 2010. Hydrolysis and coordination behavior of ferrocenyl-phosphonodithiolate: Synthesis and structure of Cu 4 [FcP (OCH 3)(μ-S)(μ 3-S)] 4 [Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Journal of molecular structure, 964(1): 78-81.
  • Maspero A, Kani I, Mohamed AA, Omary MA, Staples RJ, Fackler JP, 2003. Syntheses and structures of dinuclear gold (I) dithiophosphonate complexes and the reaction of the dithiophosphonate complexes with phosphines: Diverse coordination types. Inorganic chemistry, 42(17): 5311-5319.
  • Miertuš S, Scrocco E, Tomasi J, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1): 117-129.
  • Muthu S, Porchelvi EE, Karabacak M, Asiri A, Swathi SS, 2015. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone. Journal of Molecular Structure, 1081: 400-412.
  • Nasiri SK, Reisi-Vanani A, Hamadanian M, 2018. Molecular Structure, Spectroscopic, Local and Global Reactivity Descriptors and NBO Analysis of C32H12: A New Buckybowl and Sub-Fullerene Structure. Polycyclic Aromatic Compounds: 1-12.
  • Okulik N,Jubert AH, 2005. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1): 17-30.
  • Reed AE,Weinhold F, 1985. Natural localized molecular orbitals. The Journal of chemical physics, 83(4): 1736-1740.
  • Solak S, 2011. Ditiyofosfor Bileşiklerinin Sentezi, Mono ve Dinükleer Altın(I) ve Gümüş(I) Kompleklerinin Araştırılması, Pamukkale Üniversitesi Yüksek Lisans Tezi(Basılmış).
  • Solak S, Karakuş M, Tercan B, Hökelek T, 2011. Triethylammonium (S)-(−)-O-[1-(2-naphthyl) ethyl](4-methoxyphenyl) dithiophosphonate. Acta Crystallographica Section E: Structure Reports Online, 67(5): o1260-o1261.
  • Sundaraganesan N, Anand B, Meganathan C, Joshua BD, 2008a. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of p-chlorobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3): 871-879.
  • Sundaraganesan N, Meganathan C, Joshua BD, Mani P, Jayaprakash A, 2008b. Molecular structure and vibrational spectra of 3-chloro-4-fluoro benzonitrile by ab initio HF and density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(3): 1134-1139.
  • Şener N, Bayrakdar A, Kart HH, Şener İ, 2017. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton. Journal of Molecular Structure, 1129: 222-230.
  • Taslı P, Bayrakdar A, Karakus O, Kart H, Koc Y, 2015. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study. Optics and Spectroscopy, 119(3): 467-484.
  • Thomas CM, Neels A, Stœckli-Evans H, Süss-Fink G, 2001. Synthesis and structure of [(C 5 H 5) Fe (C 5 H 4 PS 2 OCH 2 C 6 H 4 N 3)]−, a new phosphonodithioate derivative, and its coordination chemistry with rhodium (I) and nickel (II). Journal of Organometallic Chemistry, 633(1): 85-90.
  • van Zyl WE, López-de-Luzuriaga JM, Mohamed AA, Staples RJ, Fackler JP, 2002. Dinuclear Gold (I) Dithiophosphonate Complexes: Synthesis, Luminescent Properties, and X-ray Crystal Structures of [AuS2PR (OR ‘)] 2 (R= Ph, R ‘= C5H9; R= 4-C6H4OMe, R ‘=(1 S, 5 R, 2 S)-(−)-Menthyl; R= Fc, R ‘=(CH2) 2O (CH2) 2OMe). Inorganic chemistry, 41(17): 4579-4589.
  • Zhang R, Du B, Sun G, Sun Y, 2010. Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3): 1115-1124.

Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates

Year 2019, Volume: 9 Issue: 2, 780 - 789, 01.06.2019
https://doi.org/10.21597/jist.442911

Abstract

In this work, thermodynamic properties (Heat capacity, Entropies, Enthalpy, Gibbs free and Thermal energy) and frontier (HOMO, LUMO) molecular orbitals of a derivative dithiophosphonates molecule which is [+HN(C2H5)3][CH3CHOC6H3(CF3)2)(CH3OC6H4)PS2-] in the ground state were calculated by using the quantum chemical calculation method such as density functional theory (DFT) employing B3LYP and HF levels with the 6-31G(d) basis set. In addition, the frontier molecular orbitals analysis of the molecule were researched using computational methods. Properties about the charge density distribution of the title compound and its chemical reactivity has been investigated with mapping molecular electrostatic potential surface.

References

  • Alberti E, Ardizzoia G, Brenna S, Castelli F, Galli S, Maspero A, 2007. The synthesis of a new dithiophosphonic acid and its coordination properties toward Ni (II): A combined NMR and X-ray diffraction study. Polyhedron, 26(5): 958-966.
  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R, 1987. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. Journal of the Chemical Society, Perkin Transactions 2, (12): S1-S19.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2000. Ring‐Opening of Lawesson’s Reagent: New Syntheses of Phosphono‐and Amidophosphono‐Dithioato Complexes− Structural and CP‐MAS 31P‐NMR Characterization of [p‐CH3OPh (X) PS2] 2M (X= MeO, iPrNH; M= NiII, PdII, and PtII). European Journal of Inorganic Chemistry, 2000(10): 2239-2244.
  • Aragoni MC, Arca M, Demartin F, Devillanova FA, Graiff C, Isaia F, Lippolis V, Tiripicchio A, Verani G, 2001. Reactivity of phosphonodithioato Ni II complexes: solution equilibria, solid state studies and theoretical calculations on the adduct formation with some pyridine derivatives. Journal of the Chemical Society, Dalton Transactions, (18): 2671-2677.
  • ASIF M, 2018. REVIEW ON TO FREE RADICALS, ANTIOXIDANTS AND BRIEF OVERVIEW OF OXIMES. International Journal of Current Research in Applied Chemistry & Chemical Engineering [ISSN: 2581-5385 (online)], 2(1).
  • Aydemir C, Solak S, Acar Doganlı G, Sensoy T, Arar D, Bozbeyoglu N, Mercan Dogan N, Lönnecke P, Hey-Hawkins E, Sekerci M, 2015. Synthesis, Characterization, and Antibacterial Activity of Dithiophosphonates and Amidodithiophosphonates. Phosphorus, Sulfur, and Silicon and the Related Elements, 190(3): 300-309.
  • Bayrakdar A, Kart H, Elcin S, Deligoz H, Karabacak M, 2015. Synthesis and DFT calculation of a novel 5, 17-di (2-antracenylazo)-25, 27-di (ethoxycarbonylmethoxy)-26, 28-dihydroxycalix [4] arene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136: 607-617.
  • Bellamy LJ. 1964. The infra-red spectra of complex molecules.
  • Chermette H, 1998. Density functional theory: a powerful tool for theoretical studies in coordination chemistry. Coordination chemistry reviews, 178: 699-721.
  • Chidangil S, Shukla MK, Mishra PC, 1998. A molecular electrostatic potential mapping study of some fluoroquinolone anti-bacterial agents. Molecular modeling annual, 4(8): 250-258.
  • Corminboeuf C, Tran F, Weber J, 2006. The role of density functional theory in chemistry: Some historical landmarks and applications to zeolites. Journal of Molecular Structure: THEOCHEM, 762(1): 1-7.
  • Foresman J,Frish E, 1996. Exploring chemistry. Gaussian Inc., Pittsburg, USA.
  • Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, 2009. Gaussian 09, rev. D. 01. Gaussian Inc., Wallingford CT.
  • Gataulina AR, Safin DA, Gimadiev TR, Pinus MV, 2008. Complexes of podand-containing bis (dithiophosphonate) ligands with cobalt (II), nickel (II) and cadmium (II): recognition of CH2Cl2. Transition Metal Chemistry, 33(7): 921.
  • Gray IP, Milton HL, Slawin AM, Woollins JD, 2003. Synthesis and structure of [Fc (RO) PS 2]− complexes. Dalton Transactions, (17): 3450-3457.
  • Gray IP, Slawin AM, Woollins JD, 2004. Synthesis and structure of [An (RO) PS 2]− complexes. Dalton Transactions, (16): 2477-2486.
  • Karabacak M, Asiri A, Al-Youbi A, Qusti A, Cinar M, 2014. Identification of structural and spectral features of synthesized cyano-stilbene dye derivatives: A comparative experimental and DFT study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120: 144-150.
  • Karabacak M, Çoruh A, Kurt M, 2008. FT-IR, FT-Raman, NMR spectra, and molecular structure investigation of 2, 3-dibromo-N-methylmaleimide: A combined experimental and theoretical study. Journal of Molecular Structure, 892(1): 125-131.
  • Karakus M, 2011. Synthesis and Characterization of Chiral Gold (I) Phosphine Complexes with New Dithiophosphorus Ligands. Phosphorus, Sulfur, and Silicon and the Related Elements, 186(7): 1523-1530.
  • Karakus M, Kara I, Çelik Ö, Orujalipoor I, İde S, Yilmaz H, 2018. Synthesis, characterization, single crystal structure and theoretical studies of trans-Ni (II)-complex with dithiophosphonate ligand. Journal of Molecular Structure, 1163: 128-136.
  • Karakus M, Lönnecke P, Hey-Hawkins E, 2004. Zwitterionic ferrocenyldithiophosphonates: the molecular structure of [FcP (S) S (OCH 2 CH 2 NH 2 Me)][Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Polyhedron, 23(14): 2281-2284.
  • Karakus M, Lönnecke P, Hildebrand M, Hey‐Hawkins E, 2011. Chiral Heterobimetallic Gold (I) Ferrocenyldithiophosphonato Complexes. Zeitschrift für anorganische und allgemeine Chemie, 637(7‐8): 983-987.
  • Karakus M, Solak S, Hökelek T, Dal H, Bayrakdar A, Kart SÖ, Karabacak M, Kart H, 2014. Synthesis, crystal structure and ab initio/DFT calculations of a derivative of dithiophosphonates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122: 582-590.
  • Kosar B,Albayrak C, 2011. Spectroscopic investigations and quantum chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl] phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(1): 160-167.
  • Koşar B, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O, 2010. (E)-3-[(3-(Trifluoromethyl) phenylimino) methyl] benzene-1, 2-diol: X-ray and DFT calculated structures. Turkish Journal of Chemistry, 34(3): 481-487.
  • Liu S-L, Wang X-Y, Duan T, Leung W-H, Zhang Q-F, 2010. Hydrolysis and coordination behavior of ferrocenyl-phosphonodithiolate: Synthesis and structure of Cu 4 [FcP (OCH 3)(μ-S)(μ 3-S)] 4 [Fc= Fe (η 5-C 5 H 4)(η 5-C 5 H 5)]. Journal of molecular structure, 964(1): 78-81.
  • Maspero A, Kani I, Mohamed AA, Omary MA, Staples RJ, Fackler JP, 2003. Syntheses and structures of dinuclear gold (I) dithiophosphonate complexes and the reaction of the dithiophosphonate complexes with phosphines: Diverse coordination types. Inorganic chemistry, 42(17): 5311-5319.
  • Miertuš S, Scrocco E, Tomasi J, 1981. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55(1): 117-129.
  • Muthu S, Porchelvi EE, Karabacak M, Asiri A, Swathi SS, 2015. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone. Journal of Molecular Structure, 1081: 400-412.
  • Nasiri SK, Reisi-Vanani A, Hamadanian M, 2018. Molecular Structure, Spectroscopic, Local and Global Reactivity Descriptors and NBO Analysis of C32H12: A New Buckybowl and Sub-Fullerene Structure. Polycyclic Aromatic Compounds: 1-12.
  • Okulik N,Jubert AH, 2005. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1): 17-30.
  • Reed AE,Weinhold F, 1985. Natural localized molecular orbitals. The Journal of chemical physics, 83(4): 1736-1740.
  • Solak S, 2011. Ditiyofosfor Bileşiklerinin Sentezi, Mono ve Dinükleer Altın(I) ve Gümüş(I) Kompleklerinin Araştırılması, Pamukkale Üniversitesi Yüksek Lisans Tezi(Basılmış).
  • Solak S, Karakuş M, Tercan B, Hökelek T, 2011. Triethylammonium (S)-(−)-O-[1-(2-naphthyl) ethyl](4-methoxyphenyl) dithiophosphonate. Acta Crystallographica Section E: Structure Reports Online, 67(5): o1260-o1261.
  • Sundaraganesan N, Anand B, Meganathan C, Joshua BD, 2008a. FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of p-chlorobenzoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(3): 871-879.
  • Sundaraganesan N, Meganathan C, Joshua BD, Mani P, Jayaprakash A, 2008b. Molecular structure and vibrational spectra of 3-chloro-4-fluoro benzonitrile by ab initio HF and density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(3): 1134-1139.
  • Şener N, Bayrakdar A, Kart HH, Şener İ, 2017. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton. Journal of Molecular Structure, 1129: 222-230.
  • Taslı P, Bayrakdar A, Karakus O, Kart H, Koc Y, 2015. Synthesis and characterization of three novel Schiff base compounds: Experimental and theoretical study. Optics and Spectroscopy, 119(3): 467-484.
  • Thomas CM, Neels A, Stœckli-Evans H, Süss-Fink G, 2001. Synthesis and structure of [(C 5 H 5) Fe (C 5 H 4 PS 2 OCH 2 C 6 H 4 N 3)]−, a new phosphonodithioate derivative, and its coordination chemistry with rhodium (I) and nickel (II). Journal of Organometallic Chemistry, 633(1): 85-90.
  • van Zyl WE, López-de-Luzuriaga JM, Mohamed AA, Staples RJ, Fackler JP, 2002. Dinuclear Gold (I) Dithiophosphonate Complexes: Synthesis, Luminescent Properties, and X-ray Crystal Structures of [AuS2PR (OR ‘)] 2 (R= Ph, R ‘= C5H9; R= 4-C6H4OMe, R ‘=(1 S, 5 R, 2 S)-(−)-Menthyl; R= Fc, R ‘=(CH2) 2O (CH2) 2OMe). Inorganic chemistry, 41(17): 4579-4589.
  • Zhang R, Du B, Sun G, Sun Y, 2010. Experimental and theoretical studies on o-, m-and p-chlorobenzylideneaminoantipyrines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(3): 1115-1124.
There are 41 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Alpaslan Bayrakdar 0000-0001-7967-2245

Publication Date June 1, 2019
Submission Date July 12, 2018
Acceptance Date November 19, 2018
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Bayrakdar, A. (2019). Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates. Journal of the Institute of Science and Technology, 9(2), 780-789. https://doi.org/10.21597/jist.442911
AMA Bayrakdar A. Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates. J. Inst. Sci. and Tech. June 2019;9(2):780-789. doi:10.21597/jist.442911
Chicago Bayrakdar, Alpaslan. “Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 780-89. https://doi.org/10.21597/jist.442911.
EndNote Bayrakdar A (June 1, 2019) Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates. Journal of the Institute of Science and Technology 9 2 780–789.
IEEE A. Bayrakdar, “Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 780–789, 2019, doi: 10.21597/jist.442911.
ISNAD Bayrakdar, Alpaslan. “Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates”. Journal of the Institute of Science and Technology 9/2 (June 2019), 780-789. https://doi.org/10.21597/jist.442911.
JAMA Bayrakdar A. Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates. J. Inst. Sci. and Tech. 2019;9:780–789.
MLA Bayrakdar, Alpaslan. “Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 780-9, doi:10.21597/jist.442911.
Vancouver Bayrakdar A. Electronic and Thermodynamic Properties of a Derivative of Dithiophosphonates. J. Inst. Sci. and Tech. 2019;9(2):780-9.