Research Article
BibTex RIS Cite

Investigation of Drug Release from Chitosan Fibers by QCM

Year 2019, Volume: 9 Issue: 2, 1004 - 1012, 01.06.2019
https://doi.org/10.21597/jist.451680

Abstract

In this study, the electrospun fibers of chitosan (Ch)/poly (methyl methacrylate) (PMMA) (K1), Ch/PMMA (K2) containing 0.3 wt.% ibuprofen (Ibu) and Ch/PMMA (K3) containing 0.6 wt.% Ibu were obtained for the first time by electrospinning technique. The controlled release of ibuprofen from the K2 and K3 fiber surfaces was investigated by quartz crystal microbalance (QCM) system. The results of QCM were compared with the results of ultraviolet-visible (UV-Vis) absorption spectroscopy. The morphological characteristics of the biocompatible fibers were characterized by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). It was observed that the best drug release mechanism from the drug release kinetics graphs was attributed to the K2 fiber structure obtained from the Ch/PMMA solution containing 0.3 wt.% Ibu and this was found to be the optimal drug concentration.

References

  • Abdul Amer ZJ, Kareem Ahmed J, Fahim Abbas S, 2014. Chitosan/PMMA Bioblend for Drug Release Applications. International Journal of Engineering Technology, 4: 318-324.
  • Arida AI, Tabakha MMA, 2007. Encapsulation of Ketoprofen for Controlled Drug Release. European Journal of Pharmaceutics and Biopharmaceutics, 66: 48-54.
  • Bae HS, Haider A, Kamruzzaman Selim KM, Kang DY, Kim EJ, Kang IK, 2013. Fabrication of Highly porous PMMA Electrospun Fibers and Their Application in the Removal of Phenol and Iodine. Journal of Polymer Research, 20(158): 1-7.
  • Bettencourt A, Almeida AJ, 2012. Poly(methyl methacrylate) Particulate Carriers in Drug Delivery. Journal of Microencapsulation, 29(4): 353-367.
  • Bettencourt A, Almeida AJ, 2015. Poly(methyl methacrylate): Drug Delivery Applications. Taylor and Francis Vol: 11, pp. 1-15, London-UK.
  • Celik G, Uygun Oksuz A, 2015. Controlled Release of Ibuprofen From Electrospun Biocompatible Nanofibers with In Situ QCM Measurements. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52: 76-83.
  • Dong H, Nyame V, Macdiarmid AG, Jones WE, 2004. Polyaniline/Poly(methyl methacrylate) Coaxial Fibers: The Fabrication and Effects of the Solution Properties on the Morphology of Electrospun Core Fibers. Journal of Polymer Science: Part B: Polymer Physics, 42: 3934-3942.
  • Elsabee MZ, Naguib HF, Morsi RE, 2012. Chitosan Based Nanofibers, Review. Materials Science and Engineering C, 32: 1711-1726.
  • Fattahi P, Dover, JT, Brown JL, 2017. 3D Near-Field Electrospinning of Biomaterial Microfibers with Potential for Blended Microfiber-Cell-Loaded Gel Composite Structures. Advanced Healthcare Materials, 6(1700456): 1-9.
  • Feng C, Khulbe KC, Matsuura T, 2010. Recent Progress in the Preparation, Characterization, and Applications of Nanofibers and Nanofiber Membranes via Electrospinning/Interfacial Polymerization. Journal of Applied Polymer Science, 115: 756-776.
  • Karthikeyan K, Sowjanya RS, Yugandhar ADV, Gopinath S, Korrapati PS, 2015. Design and Development of a Topical Dosage form for the Convenient Delivery of Electrospun Drug Loaded Nanofibers. RSC Advances, 5: 52420-52426.
  • Nohut Maslakci N, Ulusoy S, Uygun Oksuz A. 2017. Investigation of The Effects of Plasma-Treated Chitosan Electrospun Fibers onto Biofilm Formation. Sensors and Actuators B 246: 887-895.
  • Qian YF, Su Y, Li XQ, Wang HS, He, CH, 2010. Electrospinning of Polymethyl Methacrylate Nanofibres in Different Solvents. Iranian Polymer Journal, 19(2): 123-129.
  • Sadri M, Mohammadi A, Hosseini H, 2016. Drug Release Rate and Kinetic Investigation of Composite Polymeric Nanofibers. Nanomedicine Research Journal, 1(2): 112-121.
  • Shaked E, Shani Y, Zilberman, M, Scheinowitz M, 2015. Poly(methyl methacrylate) Particles for Local Drug Delivery Using Shock Wave Lithotripsy: In Vitro Proof of Concept Experiment. Journal of Biomedical Materials Research B: Applied Biomaterials, 103B: 1228-1237.
  • Sunar BS, Hasçiçek C, 2017. Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharmaceutical Journal, 21(3): 425-435.
  • Tungprapa S, Jangchud I, Suaphol P, 2007. Release Characteristics of Four Model Drugs from Drug-Loaded Electrospun Cellulose Acetate Fiber Mats. Polymer, 48: 5030-5041.
  • Verreck G, Chun I, Rosenblatt J, Peeters J, van Dijck A, Mensch J, Noppe M, Brewster ME, 2003. Incorporation of Drugs in an Amorphous State into Electrospun Nanofibers Composed of A Water-Insoluble, Nonbiodegradable Polymer. Journal of Controlled Release, 92: 349-360.
  • Wang Q, Du Y, Fan L, 2005. Properties of Chitosan/Poly(vinyl alcohol) Films for Drug‐Controlled Release. Journal of Applied Polymer Science, 96: 808-813.

Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi

Year 2019, Volume: 9 Issue: 2, 1004 - 1012, 01.06.2019
https://doi.org/10.21597/jist.451680

Abstract

Bu çalışmada, kitosan (Ch)/poli(metil metakrilat) (PMMA) (K1), kütlece % 0.3 ibuprofen (Ibu) içeren Ch/PMMA (K2) ve kütlece % 0.6 Ibu içeren Ch/PMMA (K3) elektrospun fiberleri elektro-eğirme tekniği ile ilk kez elde edilmiştir. K2 ve K3 fiber yüzeylerinden ibuprofenin denetimli salımı kuvars kristal mikrobalans (QCM) sistemi ile incelenmiştir. QCM sonuçları, ultraviyole-görünür bölge (UV-Vis) absorpsiyon spektroskopisinin sonuçları ile karşılaştırılmıştır. Biyo-uyumlu fiberlerin morfolojik özellikleri taramalı elektron mikroskobu-enerji dağılım spektroskopisi (SEM-EDS) ile karakterize edilmiştir. İlaç salımına ait kinetik sonuçlardan en iyi ilaç salım mekanizmasının kütlece % 0.3 Ibu içeren Ch/PMMA çözeltisinden elde edilmiş olan K2 fiber yapısına ait olduğu ve bunun en ideal ilaç konsantrasyonu olduğu belirlenmiştir.

References

  • Abdul Amer ZJ, Kareem Ahmed J, Fahim Abbas S, 2014. Chitosan/PMMA Bioblend for Drug Release Applications. International Journal of Engineering Technology, 4: 318-324.
  • Arida AI, Tabakha MMA, 2007. Encapsulation of Ketoprofen for Controlled Drug Release. European Journal of Pharmaceutics and Biopharmaceutics, 66: 48-54.
  • Bae HS, Haider A, Kamruzzaman Selim KM, Kang DY, Kim EJ, Kang IK, 2013. Fabrication of Highly porous PMMA Electrospun Fibers and Their Application in the Removal of Phenol and Iodine. Journal of Polymer Research, 20(158): 1-7.
  • Bettencourt A, Almeida AJ, 2012. Poly(methyl methacrylate) Particulate Carriers in Drug Delivery. Journal of Microencapsulation, 29(4): 353-367.
  • Bettencourt A, Almeida AJ, 2015. Poly(methyl methacrylate): Drug Delivery Applications. Taylor and Francis Vol: 11, pp. 1-15, London-UK.
  • Celik G, Uygun Oksuz A, 2015. Controlled Release of Ibuprofen From Electrospun Biocompatible Nanofibers with In Situ QCM Measurements. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 52: 76-83.
  • Dong H, Nyame V, Macdiarmid AG, Jones WE, 2004. Polyaniline/Poly(methyl methacrylate) Coaxial Fibers: The Fabrication and Effects of the Solution Properties on the Morphology of Electrospun Core Fibers. Journal of Polymer Science: Part B: Polymer Physics, 42: 3934-3942.
  • Elsabee MZ, Naguib HF, Morsi RE, 2012. Chitosan Based Nanofibers, Review. Materials Science and Engineering C, 32: 1711-1726.
  • Fattahi P, Dover, JT, Brown JL, 2017. 3D Near-Field Electrospinning of Biomaterial Microfibers with Potential for Blended Microfiber-Cell-Loaded Gel Composite Structures. Advanced Healthcare Materials, 6(1700456): 1-9.
  • Feng C, Khulbe KC, Matsuura T, 2010. Recent Progress in the Preparation, Characterization, and Applications of Nanofibers and Nanofiber Membranes via Electrospinning/Interfacial Polymerization. Journal of Applied Polymer Science, 115: 756-776.
  • Karthikeyan K, Sowjanya RS, Yugandhar ADV, Gopinath S, Korrapati PS, 2015. Design and Development of a Topical Dosage form for the Convenient Delivery of Electrospun Drug Loaded Nanofibers. RSC Advances, 5: 52420-52426.
  • Nohut Maslakci N, Ulusoy S, Uygun Oksuz A. 2017. Investigation of The Effects of Plasma-Treated Chitosan Electrospun Fibers onto Biofilm Formation. Sensors and Actuators B 246: 887-895.
  • Qian YF, Su Y, Li XQ, Wang HS, He, CH, 2010. Electrospinning of Polymethyl Methacrylate Nanofibres in Different Solvents. Iranian Polymer Journal, 19(2): 123-129.
  • Sadri M, Mohammadi A, Hosseini H, 2016. Drug Release Rate and Kinetic Investigation of Composite Polymeric Nanofibers. Nanomedicine Research Journal, 1(2): 112-121.
  • Shaked E, Shani Y, Zilberman, M, Scheinowitz M, 2015. Poly(methyl methacrylate) Particles for Local Drug Delivery Using Shock Wave Lithotripsy: In Vitro Proof of Concept Experiment. Journal of Biomedical Materials Research B: Applied Biomaterials, 103B: 1228-1237.
  • Sunar BS, Hasçiçek C, 2017. Elektroeğrilmiş Nanoliflerin İlaç Taşıyıcı Sistem Olarak ve Doku Mühendisliğinde Kullanımı. Marmara Pharmaceutical Journal, 21(3): 425-435.
  • Tungprapa S, Jangchud I, Suaphol P, 2007. Release Characteristics of Four Model Drugs from Drug-Loaded Electrospun Cellulose Acetate Fiber Mats. Polymer, 48: 5030-5041.
  • Verreck G, Chun I, Rosenblatt J, Peeters J, van Dijck A, Mensch J, Noppe M, Brewster ME, 2003. Incorporation of Drugs in an Amorphous State into Electrospun Nanofibers Composed of A Water-Insoluble, Nonbiodegradable Polymer. Journal of Controlled Release, 92: 349-360.
  • Wang Q, Du Y, Fan L, 2005. Properties of Chitosan/Poly(vinyl alcohol) Films for Drug‐Controlled Release. Journal of Applied Polymer Science, 96: 808-813.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Neslihan Nohut Maşlakcı 0000-0003-1282-2477

Publication Date June 1, 2019
Submission Date August 7, 2018
Acceptance Date December 7, 2018
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Nohut Maşlakcı, N. (2019). Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi. Journal of the Institute of Science and Technology, 9(2), 1004-1012. https://doi.org/10.21597/jist.451680
AMA Nohut Maşlakcı N. Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi. J. Inst. Sci. and Tech. June 2019;9(2):1004-1012. doi:10.21597/jist.451680
Chicago Nohut Maşlakcı, Neslihan. “Kitosan Fiberlerinden İlaç Salımının QCM Ile İncelenmesi”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 1004-12. https://doi.org/10.21597/jist.451680.
EndNote Nohut Maşlakcı N (June 1, 2019) Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi. Journal of the Institute of Science and Technology 9 2 1004–1012.
IEEE N. Nohut Maşlakcı, “Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 1004–1012, 2019, doi: 10.21597/jist.451680.
ISNAD Nohut Maşlakcı, Neslihan. “Kitosan Fiberlerinden İlaç Salımının QCM Ile İncelenmesi”. Journal of the Institute of Science and Technology 9/2 (June 2019), 1004-1012. https://doi.org/10.21597/jist.451680.
JAMA Nohut Maşlakcı N. Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi. J. Inst. Sci. and Tech. 2019;9:1004–1012.
MLA Nohut Maşlakcı, Neslihan. “Kitosan Fiberlerinden İlaç Salımının QCM Ile İncelenmesi”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 1004-12, doi:10.21597/jist.451680.
Vancouver Nohut Maşlakcı N. Kitosan Fiberlerinden İlaç Salımının QCM ile İncelenmesi. J. Inst. Sci. and Tech. 2019;9(2):1004-12.