Research Article
BibTex RIS Cite

Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler

Year 2019, Volume: 9 Issue: 2, 1186 - 1192, 01.06.2019
https://doi.org/10.21597/jist.471486

Abstract

Ülkemiz topraklarının yüksek pH ve kireç içeriği, ya da yanlış gübreleme nedeniyle bazı bitki besin elementlerinin elverişliliği düşmekte ve stres koşulları oluşmaktadır. Ülkemizde örtü altı sebze yetiştiriciliğinde üretim ve ekiliş alanı bakımından önemli yer tutan hıyar (Cucumis sativus L.) bitkisinde kalite ve verim açısından olumsuz toprak koşulları ve bitki besin element elverişliliği büyük önem arzetmektedir. Olumsuz koşullara bağlı olarak oluşan oksijen radikallerinin olumsuz etkilerini gidermek için bitkide savunma mekanizmasının geliştirilmesi gerekmektedir. Bu amaçla, yüksek pH düzeyine sahip toprakta yetiştirilen hıyar bitkisine (Cucumis sativus L.) kontrol ve 5 farklı dozda elementel toz kükürt (0, 20, 40, 80, 120 ve 200 kg da-1) uygulanmış ve deneme 4 tekrarlamalı olarak yürütülmüştür. 4 kg‘lık saksılarda kükürt uygulaması yapılarak karıştırılmış ve topraklar 3 aylık inkübasyon peryoduna bırakılmıştır. İnkübasyon peryodu sonucunda fide dikimi yapılmıştır. 2. hasat döneminden sonra, antioksidan enzim analizi için yaprak örnekleri alınmış ve antioksidant enzim analizleri yapılmıştır. Yapılan çalışma sonucunda elementel toz kükürt uygulamasının optimum olarak 80-100 kg da-1 dozunda, bitki antioksidant enzim içeriğini artırdığı belirlenmiştir.

References

  • Agarval S, Pandey V, 2004. Antioxidant enzyme response to NaCl stres in Cassia angustifolia Biologia Plantarum, 48(4): 555-560.
  • Abdallah M, Dubousset L, Meuriot F, Etienne P, Avice JC, Ourry A, 2010. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. Journal of Experimental Botany, 61(10): 2335-2346
  • Affandi FL, Rusli SH, Suhaini AM, Baharulrazi N, 2018. Effect of pH on Growth Rate and Yield of Cucumis sativus. The Italian Association of Chemical Engineering. 63:133-138.
  • Angelini R, Federico R, 1989. Histochemical evidence of poliamin oxidation and generation of hydrogen peroxide in the cell wall. Journal of Plant Physiology, 135: 212-217.
  • Angelini R, Manes F, Federico R, 1990. Spatial an funtional correlation between daimine- oxsidase and peroxidase activities and their dependence upon deetilation and wounding in chick-pea. Planta, 182: 89-96.
  • Anjum NA, Gill SS, Umar S, Ahmad I, Duarte AC, Pereira E, 2012. Improving Growth and Productivity of Oleiferous brassicas Under Changing Environment: Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms. The Scientific World Journal Volume 2012. Article ID 657808, pp:12.
  • Astolfi S, Zuchi S, 2013. Adequate sulfur supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiologiae Plantarum 35(1): 175-181.
  • Baysal GF, Tipirdamaz R, 2010. Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology, 34: 287-296.
  • Bybordi A, Mamedov G, 2010. Evaluation of application methods efficiency of zinc and iron for canola (Brassica napus L.). Notulae Scientia Biologicae, 2(1): 94-103.
  • Cahandra N, Pandey N, 2014. Influence of Sulfur Induced Stress on Oxidative Status and Antioxidative Machinery in Leaves of Allium cepa L. Hindawi Publishing Corporation International Scholarly Research Notices Volume 2014, Article ID 568081.
  • Demiral T, Türkan I, 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161: 1089-1100.
  • Dewayne LI, 2014, Understanding soilless media test results and their implications on nursery and greenhouse crop management. Agriculture and Natural Resources Publications, 161, University of Kentucky, USA.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.
  • Giordano M, Raven JA, 2014. Nitrogen and Sulfur assimilation in plants and algae. Aquatic Botany 118: 45-61.
  • Gong Y, Toivonen PMA, Lau OL, Wiersma PA, 2001. Antioxidant system level in ‘Braeburn’ apple in related to its browing disorder. Botany Bulletin in Academy, 42: 259-264.
  • Greenway H, Munns R, 1980. Mechanisms of salt tolerance in nonhalophytes. Annuals Review Plant Physiology, 31: 149-190.
  • Harsco, 2015. ‘Sustainable Management of Greens and Tees Under Abiotic Stress’, cross over- from soil to plant, Product Information Bulletin, Florida, USA. Available online at (Accessed 26 April 2017).
  • Havir EA, Mchale NA, 1987. Biochemical and developmental characterization of mutiple forms of catalase in tobacco leaves. Plant Physiology, 84: 1291-1294.
  • Jez J, 2008. Sulfur: A missing link between soils, crops, and nutrition. Agron. Monogr. 50. ASA, CSSA, and SSSA, Madison, WI.
  • Kacar B, Katkat AV, 2007. Plant Nutrition. 3rd edn. Nobel Press; Ankara, Turkey
  • Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S, 2014. Salinity tolerance in plants: Revisiting the role of sulfur metabolites. Journal of Plant Biochemistry and Physiology 2: 120.
  • Kopriva S, Calderwood A, Weckopp SC, Koprivova A, 2015. Plant sulphur and Big Data. Plant Science 241: 1-10.
  • Kopriva S, Koprivova A, 2005. Sulphate assimilation and glutathione synthesis in C4 plants. Photosynthesis Research 86(3): 363-372.
  • Manna P, Das J, Sil PC, 2013. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Current Diabetes Reviews, 9: 237–248.
  • McCord JM, 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine, 108: 652-659.
  • Mittova V, Guy M, Tal M, 2002. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radicals Research, 36: 195- 202.
  • Mittova V, Tal M, Volokita M, 2003. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environment, 26: 845-856.
  • Motior MR, Abdou AS, Fareed HD, Khaled AT, Awad MA, Golam F, Azirun MS, 2011. Influence of elemental sulfur on nutrient uptake, yield and quality of cucumber grown in sandy calcareous soil. Australian Journal of Crop Science, 5(12): 1610-1615.
  • Nazar R, Iqbal N, Syeed S, Khan NA, 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulphur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168: 807–815
  • Ohkama-Ohtsu N, Wasaki J, 2010. Recent Progress in Plant Nutrition, Research: Cross-Talk Between Nutrients, Plant Physiology and Soil Microorganisms. Plant and Cell Physiology 51(8): 1255-1264.
  • Rezk BM, Haenen GR, van der Vijgh WJ, Bast A, 2004. Lipoic acid protects efficiently only against a specific form of peroxynitrite-induced damage. Journal of Biology and Chemistry, 279: 9693–9697.
  • Scherer HW, 2001. Sulphur in crop production—Invited paper. European Journal of Agronomy. 14: 81–111.
  • Scherer HW, Pacyna S, Spoth KR, Schulz M, 2008. Low levels of ferredoxin, ATP, and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biology and Fertility of Soils, 44: 909-916
  • T, Majidian M, Rabiee M, 2018. Effects of zinc, boron and sulfur on grain yield, activity of some antioxidant enzymes and fatty acid composition of rapeseed (Brassica napus L.). Acta Agriculturae Slovenica, 111: 73-84.
  • Sudhakar C, Lakshmi A, Giridarakumar S, 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161: 613-619.
  • Y, Tam NFY, Wong YS, Lu CY, 2002. Growty and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 1-13.
  • Yordanova RY, Christov KN, Popova LP, 2004. Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51: 93-101.
  • Zenda T, LiuS, Yao D, LiuY, Duan H, 2017. Effects of sulphur and chlorine on photosynthetic parameters, antioxidant enzyme activities and yield in fresh corn grown under field conditions. International Journal of Agronomy and Agricultural Research, 11(6): 32-45.

The Changes of Antioxidant Enzyme Activity of Cucumber Plant (Cucumis Sativus L.) Depending on Sulfur Application

Year 2019, Volume: 9 Issue: 2, 1186 - 1192, 01.06.2019
https://doi.org/10.21597/jist.471486

Abstract

Due to the high pH and lime content of our country, or due to the wrong fertilization, the availability of some plant nutrients decreases and stress conditions occur. In our country cucumber (Cucumis sativus L.) plant, which is important in terms of production and cultivation area, the soil conditions and plant nutrient availability are of great importance in terms of quality and yield. In order to eliminate the negative effects of oxygen radicals due to adverse conditions, the defense mechanism must be developed in the plant. For the purpose of cucumber plant grown in soil with high pH six elemental sulphur doses (0, 20, 40, 80, 120 and 200 kg da-1) were applied. Sulphur doses were applied to pots filled with 4 kg soil and soils were exposed to 3-month incubation period. Seedlings were planted after the incubation period. At the end of the 2. harvest, sample were taken for antioxidant enzyme activity analysis, the leaves of the plants were removed and taken to the laboratory. Results revealed that in particular, sulfur applications have been shown to promote enzyme activity in plants up to a certain dozen. As a result of this study, it was determined that the optimum antioxidant activity of the plant would increase with sulfur application in the 80-100 kg da-1 S application doses.

References

  • Agarval S, Pandey V, 2004. Antioxidant enzyme response to NaCl stres in Cassia angustifolia Biologia Plantarum, 48(4): 555-560.
  • Abdallah M, Dubousset L, Meuriot F, Etienne P, Avice JC, Ourry A, 2010. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. Journal of Experimental Botany, 61(10): 2335-2346
  • Affandi FL, Rusli SH, Suhaini AM, Baharulrazi N, 2018. Effect of pH on Growth Rate and Yield of Cucumis sativus. The Italian Association of Chemical Engineering. 63:133-138.
  • Angelini R, Federico R, 1989. Histochemical evidence of poliamin oxidation and generation of hydrogen peroxide in the cell wall. Journal of Plant Physiology, 135: 212-217.
  • Angelini R, Manes F, Federico R, 1990. Spatial an funtional correlation between daimine- oxsidase and peroxidase activities and their dependence upon deetilation and wounding in chick-pea. Planta, 182: 89-96.
  • Anjum NA, Gill SS, Umar S, Ahmad I, Duarte AC, Pereira E, 2012. Improving Growth and Productivity of Oleiferous brassicas Under Changing Environment: Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms. The Scientific World Journal Volume 2012. Article ID 657808, pp:12.
  • Astolfi S, Zuchi S, 2013. Adequate sulfur supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiologiae Plantarum 35(1): 175-181.
  • Baysal GF, Tipirdamaz R, 2010. Physiological and antioxidant response of three cultivars of cucumber (Cucumis sativus L.) to salinity. Turkish Journal of Biology, 34: 287-296.
  • Bybordi A, Mamedov G, 2010. Evaluation of application methods efficiency of zinc and iron for canola (Brassica napus L.). Notulae Scientia Biologicae, 2(1): 94-103.
  • Cahandra N, Pandey N, 2014. Influence of Sulfur Induced Stress on Oxidative Status and Antioxidative Machinery in Leaves of Allium cepa L. Hindawi Publishing Corporation International Scholarly Research Notices Volume 2014, Article ID 568081.
  • Demiral T, Türkan I, 2004. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology, 161: 1089-1100.
  • Dewayne LI, 2014, Understanding soilless media test results and their implications on nursery and greenhouse crop management. Agriculture and Natural Resources Publications, 161, University of Kentucky, USA.
  • Gill SS, Tuteja N, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.
  • Giordano M, Raven JA, 2014. Nitrogen and Sulfur assimilation in plants and algae. Aquatic Botany 118: 45-61.
  • Gong Y, Toivonen PMA, Lau OL, Wiersma PA, 2001. Antioxidant system level in ‘Braeburn’ apple in related to its browing disorder. Botany Bulletin in Academy, 42: 259-264.
  • Greenway H, Munns R, 1980. Mechanisms of salt tolerance in nonhalophytes. Annuals Review Plant Physiology, 31: 149-190.
  • Harsco, 2015. ‘Sustainable Management of Greens and Tees Under Abiotic Stress’, cross over- from soil to plant, Product Information Bulletin, Florida, USA. Available online at (Accessed 26 April 2017).
  • Havir EA, Mchale NA, 1987. Biochemical and developmental characterization of mutiple forms of catalase in tobacco leaves. Plant Physiology, 84: 1291-1294.
  • Jez J, 2008. Sulfur: A missing link between soils, crops, and nutrition. Agron. Monogr. 50. ASA, CSSA, and SSSA, Madison, WI.
  • Kacar B, Katkat AV, 2007. Plant Nutrition. 3rd edn. Nobel Press; Ankara, Turkey
  • Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S, 2014. Salinity tolerance in plants: Revisiting the role of sulfur metabolites. Journal of Plant Biochemistry and Physiology 2: 120.
  • Kopriva S, Calderwood A, Weckopp SC, Koprivova A, 2015. Plant sulphur and Big Data. Plant Science 241: 1-10.
  • Kopriva S, Koprivova A, 2005. Sulphate assimilation and glutathione synthesis in C4 plants. Photosynthesis Research 86(3): 363-372.
  • Manna P, Das J, Sil PC, 2013. Role of sulfur containing amino acids as an adjuvant therapy in the prevention of diabetes and its associated complications. Current Diabetes Reviews, 9: 237–248.
  • McCord JM, 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine, 108: 652-659.
  • Mittova V, Guy M, Tal M, 2002. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress: increased activities of antioxidant enzymes in root plastids. Free Radicals Research, 36: 195- 202.
  • Mittova V, Tal M, Volokita M, 2003. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environment, 26: 845-856.
  • Motior MR, Abdou AS, Fareed HD, Khaled AT, Awad MA, Golam F, Azirun MS, 2011. Influence of elemental sulfur on nutrient uptake, yield and quality of cucumber grown in sandy calcareous soil. Australian Journal of Crop Science, 5(12): 1610-1615.
  • Nazar R, Iqbal N, Syeed S, Khan NA, 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulphur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168: 807–815
  • Ohkama-Ohtsu N, Wasaki J, 2010. Recent Progress in Plant Nutrition, Research: Cross-Talk Between Nutrients, Plant Physiology and Soil Microorganisms. Plant and Cell Physiology 51(8): 1255-1264.
  • Rezk BM, Haenen GR, van der Vijgh WJ, Bast A, 2004. Lipoic acid protects efficiently only against a specific form of peroxynitrite-induced damage. Journal of Biology and Chemistry, 279: 9693–9697.
  • Scherer HW, 2001. Sulphur in crop production—Invited paper. European Journal of Agronomy. 14: 81–111.
  • Scherer HW, Pacyna S, Spoth KR, Schulz M, 2008. Low levels of ferredoxin, ATP, and leghemoglobin contribute to limited N2 fixation of peas (Pisum sativum L.) and alfalfa (Medicago sativa L.) under S deficiency conditions. Biology and Fertility of Soils, 44: 909-916
  • T, Majidian M, Rabiee M, 2018. Effects of zinc, boron and sulfur on grain yield, activity of some antioxidant enzymes and fatty acid composition of rapeseed (Brassica napus L.). Acta Agriculturae Slovenica, 111: 73-84.
  • Sudhakar C, Lakshmi A, Giridarakumar S, 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161: 613-619.
  • Y, Tam NFY, Wong YS, Lu CY, 2002. Growty and physiological responses of two mangrove species (Bruguira gymnorrhiza and Kandelia candel) to waterlogging. Environmental and Experimental Botany, 1-13.
  • Yordanova RY, Christov KN, Popova LP, 2004. Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51: 93-101.
  • Zenda T, LiuS, Yao D, LiuY, Duan H, 2017. Effects of sulphur and chlorine on photosynthetic parameters, antioxidant enzyme activities and yield in fresh corn grown under field conditions. International Journal of Agronomy and Agricultural Research, 11(6): 32-45.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Toprak Bilimi ve Bitki Besleme / Soil Science and Plant Nutrition
Authors

Adem Güneş 0000-0003-0411-6134

Osman Sönmez 0000-0002-9134-6466

Publication Date June 1, 2019
Submission Date October 17, 2018
Acceptance Date January 29, 2019
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Güneş, A., & Sönmez, O. (2019). Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. Journal of the Institute of Science and Technology, 9(2), 1186-1192. https://doi.org/10.21597/jist.471486
AMA Güneş A, Sönmez O. Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. J. Inst. Sci. and Tech. June 2019;9(2):1186-1192. doi:10.21597/jist.471486
Chicago Güneş, Adem, and Osman Sönmez. “Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler”. Journal of the Institute of Science and Technology 9, no. 2 (June 2019): 1186-92. https://doi.org/10.21597/jist.471486.
EndNote Güneş A, Sönmez O (June 1, 2019) Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. Journal of the Institute of Science and Technology 9 2 1186–1192.
IEEE A. Güneş and O. Sönmez, “Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler”, J. Inst. Sci. and Tech., vol. 9, no. 2, pp. 1186–1192, 2019, doi: 10.21597/jist.471486.
ISNAD Güneş, Adem - Sönmez, Osman. “Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler”. Journal of the Institute of Science and Technology 9/2 (June 2019), 1186-1192. https://doi.org/10.21597/jist.471486.
JAMA Güneş A, Sönmez O. Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. J. Inst. Sci. and Tech. 2019;9:1186–1192.
MLA Güneş, Adem and Osman Sönmez. “Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler”. Journal of the Institute of Science and Technology, vol. 9, no. 2, 2019, pp. 1186-92, doi:10.21597/jist.471486.
Vancouver Güneş A, Sönmez O. Kükürt Uygulamalarına Bağlı Olarak Hıyar Bitkisinin (Cucumis Sativus L.) Antioksidant Enzim Aktivitesindeki Değişimler. J. Inst. Sci. and Tech. 2019;9(2):1186-92.