Research Article
BibTex RIS Cite

Investigation of Electrical Characteristics of Yb/p-Si Schottky Diodes

Year 2019, Volume: 9 Issue: 3, 1385 - 1394, 01.09.2019
https://doi.org/10.21597/jist.537844

Abstract

Yb/p-Si Schottky diodes were fabricated by thermal evaporation method. The measurements of current-voltage (I-V) and capacitance-voltage (C-V) of these diodes were carried out at room temperature and dark. The parameters such as ideality factor (n), zero-bias barrier height (Φbo) and series resistance (Rs) of these diodes were obtained by using I-V data whereas some electrical parameters such as Fermi energy level (EF), density of acceptor atoms (NA) and barrier height [Фb(C-V)] were calculated by using C-2-V characteristics. The value of n was calculated as 1.59 while the value of Φbo was determined as 0.75 eV from forward bias I-V characteristic. The values of EF, NA ve Фb(C-V) were obtained as 0.15 eV, 5.27×1015 cm-3 and 0.67 eV from C-2-V characteristic, respectively. Also, the values of n, Фb and Rs were calculated from the functions of Cheung and Norde. According to the findings, Yb/p-Si Schottky diodes have low leakage current, good rectifier rate and high barrier height. These results showed that Yb is an attractive element to obtain high quality Schottky diode.

References

  • Akkılıç A, Türüt A, Çankaya G, Kılıçoğlu T, 2003. Correlation between Barrier Height and Ideality Factors of Cd/n-Si and Cd/p-Si Schottky Barrier Diodes. Solid State Communications, 125, 551-556.
  • Altındal Ş, Dökme İ, Bülbül M M, Yalçın N, Serin T, 2006. The Role of the Interface Insulator Layer and Interface States on the Current-Transport Mechanisms of Schottky Diodes in Wide Temperature Range. Microelectronic Engineering, 83, 499-505.
  • Ayyıldız E, Türüt A, Efeoğlu H, Tüzemen S, Sağlam M, Yoğurtçu Y K, 1996. Effect of Series Resistance on the Forward Current-Voltage Characteristics of Schottky Diodes in the Presence of Interfacial Layer. Solid-State Electronics, 39(1), 83-87.
  • Bilkan Ç, Gümüş A, Altındal Ş, 2015. The Source of Negative Capacitance and Anomalous Peak in the Forward Bias Capacitance-Voltage Cr/p-Si Schottky Barrier Diodes (SBDs). Materials Science in Semiconductor Processing, 39, 484-491.
  • Bohlin K E, 1986. Generalized Norde Plot Including Determination of the Ideality Factor. Journal of Applied Physics, 60, 1223.
  • Card H C, Rhoderick E H, 1971. Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes. Journal of Physics D: Applied Physics, 4, 1589-1601.
  • Chen J, Ku T C, Li M F, Chin A, 2012. Investigation of Schottky Junction and MOS Technology for III-V Compound Semiconductor MOSFET Application. 12th International Workshop on Junction Technology, Shanghai, May 14-15, 2012.
  • Cheung S K, Cheung N W, 1986. Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. Applied Physics Letters, 49 (2), 85.
  • Çankaya G, Uçar N, 2004. Schottky Barrier Height Dependence on the Metal Work Function for p-Type Si Schottky Diodes. Verlag der Zeitschriftfur Naturforschung, 795-798.
  • Çetin H, Şahin B, Ayyıldız E, Türüt A, 2005. Ti/p-Si Schottky Barrier Diodes with Interfacial Layer Prepared by Thermal Oxidation. Physica B, 364, 133-141.
  • Das M, Kumar A, Mandal B, Htay M T, Mukherjee S, 2018. Impact of Schottky Junctions in the Transformation of Switching Modes in Amorphous Y2O3-Based Memristive System. Journal of Physics D: Applied Physics, 51, 315102 (10pp).
  • Dobrescu D, Rusu A, Udrea F, Dobrescu L, 2001. Image Force Effect on Forward Characteristic of a Rectifier Metal-Semiconductor Contact. IEEE, DOI: 10.1109/SMICND.2001.967500.
  • Ejderha K, Karabulut A, Türkan N, Türüt A, 2017. The Characteristic Parameters of N/n-6H-SiC Devices Over a Wide Measurement Temperature Range. Silicon, 9, 395-401.
  • Güllü Ö, Aydoğan S, Türüt A, 2008. Fabrication and Electrical Characteristics of Schottky Diode Based on Organic Material. Microelectronic Engineering, 85, 1647-1651.
  • Karabulut A, Efeoğlu H, Türüt A, 2017. Influence of Al2O3 Barrier on the Interfacial Electronic Structure of Au/Ti/n-GaAs Structures. Journal of Semiconductors, 38, 054003(10p).
  • Karataş Ş, Altındal Ş, 2005. Zn/p-Si Schottky Diyotlarda Temel Elektriksel Parametrelerin Sıcaklığa Bağlı İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 8(1), 26-30.
  • Kınacı B, 2017. Effect on the Electrical Characterizations of Temperature and Frequency Depending on Series Resistance and Interface States in MS Structure. Journal of Polytechnic, 20(2), 313-318.
  • Kundu S, Kumar A, Banerjee S, Banerji P, 2012. Electrical Properties and Barrier Modification of GaAs MIS Schottky Device Based on MEH-PPV Organic Interfacial Layer. Materials Science in Semiconductor Processing, 12, 386-392.
  • Lapa H E, Kökce A, Al-Dharob M, Orak İ, Özdemir A F, Altındal Ş, 2017. Interfacial Layer Thickness Dependent Electrical Characteristics of Au/(Zn- Doped PVA)/n-4H-SiC (MPS) Structures at Room Temperature. The European Physical Journal Applied Physics, 80, 10101 (8p).
  • Neamen D A, 2003. Semiconductor Physics and Devices: Basic Principles. McGraw-Hill Companies, pp. 326-359, New York.
  • Nicollian E H, Brews J R, 1982. MOS (Metal Oxide Semiconductor) Physics and Technology. John Wiley and Sons, pp. 71-235, New York.
  • Norde H, 1979. A Modified Forward I-V Plot for Schottky Diodes With High Series Resistance. Journal of Applied Physics, 50 (7), 5052-5053.
  • Reddy V R, Rao L D, Janardhanam V, Kang M S, Choi C J, 2013. Electrical Properties and Interface States of Rare-Earth Metal Ytterbium Schottky Contacts to p-Type InP. Material Transactions, 54 (12), 2173-2179.
  • Reinhardt K C, Singh A, Anderson A, 1988. Ytterbium Metal-Insulator-Semiconductor Contacts to Indium Phosphide. Solid-State Electronics, 31 (10), 1537-1539.
  • Rhoderick E H, Williams R H, 1988. Metal-Semiconductor Contacts. Clarendon Press, pp. 89-179, New York. (2. Baskı).
  • Sağlam M, Ayyıldız E, Gümüş A, Türüt A, Efeoğlu H, Tüzemen S, 1996. Series Resistance Calculation for the Metal-Insulator-Semiconductor Schottky Barrier Diodes. Applied Physics A, 62, 269-273.
  • Soylu M, 2011. The Effect of Thickness of Organic Layer on Electronic Properties of Al/Rhodamine B/p-Si Structure. Materials Science in Semiconductor Processing, 14, 212-218.
  • Takami Y, Shiraishi F, Hosoe M, 1984. Evaluation of Various Electrode Metals Ultra-High Purity p-Type Si Surface Barrier Detectors. IEEE Transactions on Nuclear Science, 31(1); 340-343.
  • Taşçıoğlu İ, Farooq W A, Turan R, Altındal Ş, Yakuphanoğlu F, 2014. Charge Transport Mechanisms and Density of Interface Traps in MnZnO/p-Si Diodes. Journal of Alloys and Compounds, 590, 157-161.
  • Tataroğlu A, Altındal Ş, 2006. Characterization of Current-Voltage (I-V) and Capacitance-Voltage-Frequency (C-V-f) Features of Al/SiO2/p-Si (MIS) Schottky Diodes, Microelectronic Engineering, 83, 582-588.
  • Tecimer H, 2018. Al/PVA (Zn-katkılı)/p-Si (MPS) Yapılarda Organik Arayüzey Tabaka Kalınlığının ve Seri Direncin C-G/-V Karakteristikleri Üzerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(3), 680-690.
  • Temirci C, Gülcan M, Göksen K, Sönmez M, 2010. Ohmic and Rectifier Properties of Al/Ligand(N-APTH) and Al/Cu(II)Complex Contacts. Microelectronic Engineering, 87, 2282-2287.
  • Uslu Tecimer H, Alper M A, Tecimer H, Tan S O, Altındal Ş, 2018. Integration of Zn-doped Organic Polymer Nanocomposites between Metal Semiconductor Structure to Reveal the Electrical Qualifications of the Diodes. Polymer Bulletin, 75, 4257-4271.
  • Werner J, Levi A F J, Tung R T, Anzlowar M, Pinto M, 1987. Origin of the Excess Capacitance at Intimate Schottky Contacts. Physical Review Letters, 60, 53-56.

Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi

Year 2019, Volume: 9 Issue: 3, 1385 - 1394, 01.09.2019
https://doi.org/10.21597/jist.537844

Abstract

Yb/p-Si Schottky diyotları termal buharlaştırma yöntemiyle imal edilmiştir. Bu diyotların akım-gerilim (I-V) ve kapasitans-gerilim (C-V) ölçümleri karanlıkta ve oda sıcaklığında alınmıştır. I-V verileri kullanılarak idealite faktörü (n), sıfır-beslem engel yüksekliği (bo) ve seri direnç (Rs) parametreleri hesaplanırken C-2-V karakteristiğinden Fermi enerji seviyesi (EF), alıcı atomların yoğunluğu (NA) ve engel yüksekliği [Фb(C-V)] gibi bazı elektriksel parametreler hesaplanmıştır. Doğru beslem I-V karakteristiklerinden n değeri 1.59 olarak hesaplanırken bo değeri 0.75 eV olarak hesaplanmıştır. C-2-V karakteristiğinden EF, NA ve Фb(C-V) değerleri, sırasıyla, 0.15 eV, 5.27×1015 cm-3 ve 0.67 eV olarak bulunmuştur. Ayrıca, n, Фb ve Rs değerleri Cheung ve Norde fonksiyonlarından da elde edilmiştir. Elde edilen bulgulara göre, Yb/p-Si Schottky diyotlarının düşük sızıntı akımına, iyi bir doğrultma oranına ve yüksek engel yüksekliğine sahip olması, Yb’un kaliteli Schottky diyot elde etmek için cazip bir element olduğunu göstermiştir.

References

  • Akkılıç A, Türüt A, Çankaya G, Kılıçoğlu T, 2003. Correlation between Barrier Height and Ideality Factors of Cd/n-Si and Cd/p-Si Schottky Barrier Diodes. Solid State Communications, 125, 551-556.
  • Altındal Ş, Dökme İ, Bülbül M M, Yalçın N, Serin T, 2006. The Role of the Interface Insulator Layer and Interface States on the Current-Transport Mechanisms of Schottky Diodes in Wide Temperature Range. Microelectronic Engineering, 83, 499-505.
  • Ayyıldız E, Türüt A, Efeoğlu H, Tüzemen S, Sağlam M, Yoğurtçu Y K, 1996. Effect of Series Resistance on the Forward Current-Voltage Characteristics of Schottky Diodes in the Presence of Interfacial Layer. Solid-State Electronics, 39(1), 83-87.
  • Bilkan Ç, Gümüş A, Altındal Ş, 2015. The Source of Negative Capacitance and Anomalous Peak in the Forward Bias Capacitance-Voltage Cr/p-Si Schottky Barrier Diodes (SBDs). Materials Science in Semiconductor Processing, 39, 484-491.
  • Bohlin K E, 1986. Generalized Norde Plot Including Determination of the Ideality Factor. Journal of Applied Physics, 60, 1223.
  • Card H C, Rhoderick E H, 1971. Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes. Journal of Physics D: Applied Physics, 4, 1589-1601.
  • Chen J, Ku T C, Li M F, Chin A, 2012. Investigation of Schottky Junction and MOS Technology for III-V Compound Semiconductor MOSFET Application. 12th International Workshop on Junction Technology, Shanghai, May 14-15, 2012.
  • Cheung S K, Cheung N W, 1986. Extraction of Schottky Diode Parameters from Forward Current-Voltage Characteristics. Applied Physics Letters, 49 (2), 85.
  • Çankaya G, Uçar N, 2004. Schottky Barrier Height Dependence on the Metal Work Function for p-Type Si Schottky Diodes. Verlag der Zeitschriftfur Naturforschung, 795-798.
  • Çetin H, Şahin B, Ayyıldız E, Türüt A, 2005. Ti/p-Si Schottky Barrier Diodes with Interfacial Layer Prepared by Thermal Oxidation. Physica B, 364, 133-141.
  • Das M, Kumar A, Mandal B, Htay M T, Mukherjee S, 2018. Impact of Schottky Junctions in the Transformation of Switching Modes in Amorphous Y2O3-Based Memristive System. Journal of Physics D: Applied Physics, 51, 315102 (10pp).
  • Dobrescu D, Rusu A, Udrea F, Dobrescu L, 2001. Image Force Effect on Forward Characteristic of a Rectifier Metal-Semiconductor Contact. IEEE, DOI: 10.1109/SMICND.2001.967500.
  • Ejderha K, Karabulut A, Türkan N, Türüt A, 2017. The Characteristic Parameters of N/n-6H-SiC Devices Over a Wide Measurement Temperature Range. Silicon, 9, 395-401.
  • Güllü Ö, Aydoğan S, Türüt A, 2008. Fabrication and Electrical Characteristics of Schottky Diode Based on Organic Material. Microelectronic Engineering, 85, 1647-1651.
  • Karabulut A, Efeoğlu H, Türüt A, 2017. Influence of Al2O3 Barrier on the Interfacial Electronic Structure of Au/Ti/n-GaAs Structures. Journal of Semiconductors, 38, 054003(10p).
  • Karataş Ş, Altındal Ş, 2005. Zn/p-Si Schottky Diyotlarda Temel Elektriksel Parametrelerin Sıcaklığa Bağlı İncelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Fen ve Mühendislik Dergisi, 8(1), 26-30.
  • Kınacı B, 2017. Effect on the Electrical Characterizations of Temperature and Frequency Depending on Series Resistance and Interface States in MS Structure. Journal of Polytechnic, 20(2), 313-318.
  • Kundu S, Kumar A, Banerjee S, Banerji P, 2012. Electrical Properties and Barrier Modification of GaAs MIS Schottky Device Based on MEH-PPV Organic Interfacial Layer. Materials Science in Semiconductor Processing, 12, 386-392.
  • Lapa H E, Kökce A, Al-Dharob M, Orak İ, Özdemir A F, Altındal Ş, 2017. Interfacial Layer Thickness Dependent Electrical Characteristics of Au/(Zn- Doped PVA)/n-4H-SiC (MPS) Structures at Room Temperature. The European Physical Journal Applied Physics, 80, 10101 (8p).
  • Neamen D A, 2003. Semiconductor Physics and Devices: Basic Principles. McGraw-Hill Companies, pp. 326-359, New York.
  • Nicollian E H, Brews J R, 1982. MOS (Metal Oxide Semiconductor) Physics and Technology. John Wiley and Sons, pp. 71-235, New York.
  • Norde H, 1979. A Modified Forward I-V Plot for Schottky Diodes With High Series Resistance. Journal of Applied Physics, 50 (7), 5052-5053.
  • Reddy V R, Rao L D, Janardhanam V, Kang M S, Choi C J, 2013. Electrical Properties and Interface States of Rare-Earth Metal Ytterbium Schottky Contacts to p-Type InP. Material Transactions, 54 (12), 2173-2179.
  • Reinhardt K C, Singh A, Anderson A, 1988. Ytterbium Metal-Insulator-Semiconductor Contacts to Indium Phosphide. Solid-State Electronics, 31 (10), 1537-1539.
  • Rhoderick E H, Williams R H, 1988. Metal-Semiconductor Contacts. Clarendon Press, pp. 89-179, New York. (2. Baskı).
  • Sağlam M, Ayyıldız E, Gümüş A, Türüt A, Efeoğlu H, Tüzemen S, 1996. Series Resistance Calculation for the Metal-Insulator-Semiconductor Schottky Barrier Diodes. Applied Physics A, 62, 269-273.
  • Soylu M, 2011. The Effect of Thickness of Organic Layer on Electronic Properties of Al/Rhodamine B/p-Si Structure. Materials Science in Semiconductor Processing, 14, 212-218.
  • Takami Y, Shiraishi F, Hosoe M, 1984. Evaluation of Various Electrode Metals Ultra-High Purity p-Type Si Surface Barrier Detectors. IEEE Transactions on Nuclear Science, 31(1); 340-343.
  • Taşçıoğlu İ, Farooq W A, Turan R, Altındal Ş, Yakuphanoğlu F, 2014. Charge Transport Mechanisms and Density of Interface Traps in MnZnO/p-Si Diodes. Journal of Alloys and Compounds, 590, 157-161.
  • Tataroğlu A, Altındal Ş, 2006. Characterization of Current-Voltage (I-V) and Capacitance-Voltage-Frequency (C-V-f) Features of Al/SiO2/p-Si (MIS) Schottky Diodes, Microelectronic Engineering, 83, 582-588.
  • Tecimer H, 2018. Al/PVA (Zn-katkılı)/p-Si (MPS) Yapılarda Organik Arayüzey Tabaka Kalınlığının ve Seri Direncin C-G/-V Karakteristikleri Üzerine Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(3), 680-690.
  • Temirci C, Gülcan M, Göksen K, Sönmez M, 2010. Ohmic and Rectifier Properties of Al/Ligand(N-APTH) and Al/Cu(II)Complex Contacts. Microelectronic Engineering, 87, 2282-2287.
  • Uslu Tecimer H, Alper M A, Tecimer H, Tan S O, Altındal Ş, 2018. Integration of Zn-doped Organic Polymer Nanocomposites between Metal Semiconductor Structure to Reveal the Electrical Qualifications of the Diodes. Polymer Bulletin, 75, 4257-4271.
  • Werner J, Levi A F J, Tung R T, Anzlowar M, Pinto M, 1987. Origin of the Excess Capacitance at Intimate Schottky Contacts. Physical Review Letters, 60, 53-56.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Havva Elif Lapa 0000-0002-5706-4641

Ali Kökce This is me 0000-0001-9814-830X

Ahmet Faruk Özdemir 0000-0001-9879-9209

Publication Date September 1, 2019
Submission Date March 10, 2019
Acceptance Date May 15, 2019
Published in Issue Year 2019 Volume: 9 Issue: 3

Cite

APA Lapa, H. E., Kökce, A., & Özdemir, A. F. (2019). Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi. Journal of the Institute of Science and Technology, 9(3), 1385-1394. https://doi.org/10.21597/jist.537844
AMA Lapa HE, Kökce A, Özdemir AF. Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi. J. Inst. Sci. and Tech. September 2019;9(3):1385-1394. doi:10.21597/jist.537844
Chicago Lapa, Havva Elif, Ali Kökce, and Ahmet Faruk Özdemir. “Yb/P-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi”. Journal of the Institute of Science and Technology 9, no. 3 (September 2019): 1385-94. https://doi.org/10.21597/jist.537844.
EndNote Lapa HE, Kökce A, Özdemir AF (September 1, 2019) Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi. Journal of the Institute of Science and Technology 9 3 1385–1394.
IEEE H. E. Lapa, A. Kökce, and A. F. Özdemir, “Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 9, no. 3, pp. 1385–1394, 2019, doi: 10.21597/jist.537844.
ISNAD Lapa, Havva Elif et al. “Yb/P-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi”. Journal of the Institute of Science and Technology 9/3 (September 2019), 1385-1394. https://doi.org/10.21597/jist.537844.
JAMA Lapa HE, Kökce A, Özdemir AF. Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi. J. Inst. Sci. and Tech. 2019;9:1385–1394.
MLA Lapa, Havva Elif et al. “Yb/P-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 9, no. 3, 2019, pp. 1385-94, doi:10.21597/jist.537844.
Vancouver Lapa HE, Kökce A, Özdemir AF. Yb/p-Si Schottky Diyotlarının Elektriksel Karakteristiklerinin İncelenmesi. J. Inst. Sci. and Tech. 2019;9(3):1385-94.