Year 2020, Volume 10 , Issue 1, Pages 250 - 259 2020-03-01

Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes
Meyve Suyu İşleme Tesisi Atıklarından Biyokompozit Ambalaj Malzemelerinin Üretimi

Seda ERSUS [1] , Arzu YALÇIN MELİKOĞLU [2] , Serap CESUR [3]


The use of biocomposite packaging materials is nowadays considered as an important issue for overcoming the environmental problems caused by plastic-based packaging materials that is produced from fossil fuels which take centuries to degrade in nature. Biocomposite materials are made up of two components, a polymer matrix and a natural organic reinforcing agent/filling material. In the production of biocomposites, the use of low-cost and widely available waste materials have advantages such as increasing biodegradability and a reduction in weight of the more expensive materials. The pomace resulting from the large quantities of peel, seed, stalks, etc. produced as waste by the fruit juice processing sector, and the polysaccharides such as starch, pectin, cellulose, hemicellulose and lignin derived from this pomace, has the potential to be used as reinforcing agent and/or filling material in the development of biocomposite packaging materials with 10-50% (w/w) addition. In this review, (i) extraction of some of the biopolymers such as pectin and cellulose from the fruit juice processing waste, (ii) production of biocomposite food packaging materials, and (iii) investigation of the effects of reinforcing agents obtained from the fruit juice processing waste on the mechanical, barrier and biodegradation properties of biocomposite materials were summarized.

Günümüzde fosil kaynaklardan elde edilen, doğada kendiliğinden yok olması yüzlerce yıl alan plastik esaslı ambalaj atıklarının neden olduğu çevresel sorunların giderilmesinde, biyobozunur özellik gösteren biyokompozit ambalaj malzemelerinin kullanımı önemli bir alternatiftir. Biyokompozit malzeme polimer matris ve doğal organik takviye ajanı/dolgu maddesi olmak üzere iki bileşenden meydana gelmektedir. Özellikle biyokompozit malzemelerin üretiminde, ucuz ve bol olan atıkların kullanımı; maliyet avantajı, biyobozunma davranışı ve daha pahalı malzeme ağırlığında azalma sağlamaktadır. Meyve suyu işleme sanayinde atık olarak yüksek miktarda ortaya çıkan kabuk, çekirdek, sap vb. bileşenleri içeren posanın kendisi ve bu atıklardan elde edilen nişasta, pektin, selüloz, hemiselüloz ve lignin gibi polisakkaritler biyokompozit ambalaj malzemelerinin geliştirilmesinde takviye ajanı ve/veya dolgu maddesi olarak ağırlıkça %10-50 oranında kullanım potansiyeline sahiptir. Bu derlemede; (i) meyve suyu üretim atıklarında bulunan pektin ve selüloz biyopolimerlerinin üretimi (ii) biyokompozit gıda ambalaj malzemelerinin üretimi, (iii) meyve suyu işletim tesisi atıklarından elde edilen takviye ajanlarının biyokompozit malzemenin mekanik, bariyer ve biyobozunma davranışı üzerine etkileri konusunda bilgi verilmektedir.

  • Aigbodion VS, Atuanya CU, Igogori EA, Ihom P, 2013. Development of High-Density Polyethylene/Orange Peels Particulate Bio-Composite. Gazi University Journal of Science, 26 (1):107-117.
  • Akdağ E, 2011. Türkiye meyve suyu vb. ürünler sanayi raporu. Meyve Suyu Endüstrisi Derneği (MEYED), İstanbul.
  • Aimin Z, Chao L, 2003. Short Communication Chemical Initiation Mechanism of Maleic Anhydride Grafted onto Styrene–butadiene–styrene Block Copolymer. European Polymer Journal, 39: 1291– 1295.
  • Ali RR, Rahman WA, Kasmaini RM, Ibrahim N, Hasbullah H, Sadikin AN, Asli UA, Abouzari E, 2017. Pineapple Peel Fibre Biocomposite: Characterisation and Biodegradation Studies. Chemical engineering transactions, 56: 1333-1338.
  • Allison BJ, Simmons CW, 2018. Obtaining Multiple Coproducts from Red Grape Pomace via Anthocyanin Extraction and Biogas Production. J. Agric. Food Chem., 66: 8045−8053.
  • Anonymous, 2011. Batı Akdeniz Kalkınma Ajansı, Meyve suyu sektör raporu http://baka.org.tr/uploads/1303486551MEYVE-SUYU-KATALOG--TURKCE-SON.pdf. (Date of access: 15 February 2019).
  • Anwar Z, Gulfraz M, Irshad M, 2014. Agro-industrial lignocellulosic biomass a key tounlock the future bio-energy: A brief review. Journal of Radiation Research and Applied Sciences, 7: 163-173.
  • Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppare VP, 2007. Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology, 7: 9- 22.
  • Arıkan A, 2010. Gıda ambalaj malzemeleri. Ambalaj Bülteni, Temmuz-Ağustos, 32-35.
  • Arslan N, 1994. Pektinin fizikokimyasal özellikleri, üretimi ve gıdalarda kullanımı. GIDA, 19(3): 187-192.
  • Aygören E, Sancak AZ, Akdağ E, Demirtaş M, Dönmez D, Sancak K, Demir A, 2014. Türkiye’de meyve suyu üretim sektörü. XI. Ulusal Tarım Ekonomisi Kongresi, 3-5 Eylül, Samsun.
  • Azad AKM, Ali MA, Akter S, Rahman D, Ahmed M, 2014. Isolation and characterization of pectin extracted from lemon pomace during ripening. Journal of Food and Nutrition Sciences, 2(2): 30-35.
  • Baississe S, Ghannem H, Fahloul D, Lekbir A, 2010. Comparison of Structure and Emulsifying Activity of Pectin Extracted from Apple Pomace and Apricot Pomace. World Journal of Dairy & Food Sciences, 5(1).
  • Baron RC, Perez LL, Salcedo JM, Cordoba LP, Sobral PJA, 2017. Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. International Journal of Biological Macromolecules, 98: 676–683.
  • Batori V, Jabbari M, Akesson D, Lennartsson PR, Taherzadeh MJ, Zamani A, 2017. Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. International Journal of Polymer Science, 9p.
  • Barreca D, Bellocco E, Laganà G, Ginestra G, Bisignano C, 2014. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem, 160: 292–297.
  • Bengtsson M, Le Bailiff M, Oksman K, 2007. Extrusion and Mechanical Properties of Highly Filled Cellulose Fibre- Polypropylene Composite. Applied Science and Manufacturing Composites, 38: 1922-1931.
  • Bupesh G, Vijaykumar TS, Manivannan S, Beerammal M, Manikandan M, 2016. Identification of Secondary Metabolites, Antimicrobial and Antioxidant Activity of Grape Fruit (Vitis vinifera) Skin Extract. Diabetes Obes Int. J., 1(1):1-6.
  • Cemeroğlu,, 2004. Meyve ve Sebze işleme Teknolojisi, Başkent Klişe Matbaacılık, 670s, Ankara.
  • Denev P, Kratchanova M, Ciz M, Lojek A, Vasicek O, Nedelcheva P, 2014. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health. Food Chem, 157: 37–44.
  • Djılas S, Čanadanovıć J, Ćetkovıć BG, 2009. By-products of fruıts processing as a source of phytochemıcals. Chemical Industry & Chemical Engineering Quarterly, 15(4): 191- 202.
  • Fishman ML, Cooke PH, 2009. The structure of high-methoxyl sugar acid gels of citrus pectin as determined by AFM. Carbohydrate Research, 344(14): 1792-1797.
  • Gaikwad KK, Lee JY, Lee YS, 2016. Development of polyvinyl alcohol and apple pomace bio-composite film with antioxidant properties for active food packaging application. J. Food Sci. Technol., 53(3): 1608–1619.
  • Garna H, Mabon N, Robert C, Cornet C, Nott K, Legros H, Wathelet B, Paquot M, 2007. Effect of extraction conditions on the yield and purity of apple pomace pectin precipitated but not washed by alcohol. Journal of Food Science, 72:C1-C9.
  • Günkaya Z, Demirel R, Banar M, 2016. Portakal kabuğu atıklarından üretilen biyokompozit ambalaj filminin aflatoksinlere karşı etkisinin incelenmesi. Pamukkale Univ. Muh. Bilim Derg., 22(6): 513-519.
  • Jafari F, Khodaiyan F, Kiani H, Hosseini SS, 2016. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers, 157: 1315-1322.
  • Johar N, Ahmad I, Dufresne A, 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1): 93–99.
  • Kocamanlar E., 2009. Ambalaj ve fonksiyonları. Ambalaj Bülteni, Eylül-Ekim, 2009.
  • Kar F, Arslan N, 1999. Characterization of Orange Peel Pectin and Effect of Sugars, L-ascorbic acid, Ammonium Persulfate, Salts on Viscosity of Orange Peel Pectin Solutions. Carbohydrate Polymers, 40: 285-291.
  • Karling M, Bicas TC, Lima VA, Oldoni TL, 2017. Grape and Apple Pomaces from Southern Brazil: Valorization of By-Products through Investigation of Their Antioxidant Potential. J. Braz. Chem. Soc., 28 (10):1857-1865.
  • Lee M, 2009. Solution-casting of Disulfonated Poly(arylene ether sulfone) Multiblock Copolymer Films for Proton Exchange Membranes. Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy thesis (Printed).
  • Lima EMB, L AM, Mungiata APS, Santos NRR, Preira ICS, Neves TTM, Gonçalves LFC, Moreira APD, Middea A, Neuman R, Tavares MIB, Oleveira RN, 2018. Poly(lactic acid) biocomposites with mango waste and organo-montmorillonite for packaging. Journal of Applied Polymer Science, 1-11.
  • Liu S, Yu T, Wu Y, Li W, Li B, 2014. Evolution of cellulose into flexible conductive green electronics: A smart strategy to fabricate sustainable electrodes for supercapacitors. RSC Advances, 4(64): 34134–34143.
  • Llorch R, Espin JC, Tomas-Barberan FA, Ferreres F, 2002. Artichoke (Cynara scolymus L.) Byproducts as a Potential Source of Health-Promoting Antioxidant Phenolics. J. Agric. Food Chem., 50: 3458−3464.
  • Makhijani K, Kumar R, Sharma S, 2015. Biodegradability of Blended Polymers: A Comparison of Various Properties. Critical Reviews in Environmental Science and Technology, 45:1801–1825.
  • Mangaraj S, Goswami TK, Mahajan PV, 2009. Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Eng Rev., 1:133–158.
  • Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V, 2006. Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydrate Polymers, 64: 516 – 523.
  • Massias A, Boisard S, Baccaunaud M, Calderon FL, Subra-Paternault P, 2015. Recovery of phenolics from apple peels using CO2 + ethanol extraction: kinetics and antioxidant activity of extracts. J Supercrit Fluids, 98:172–182.
  • Melikoğlu Yalçın A, Aytaş BE, Cesur S, Bilek S, 2017. Poliolefinlerin bozunma, biyobozunma mekanizmaları ve çevresel etkileri. Çevre Bilim ve Teknolojisi 2(1): 1-25.
  • Miceli-Garcia LG, 2014. Pectin from apple pomace: extraction, characterization, and utilization in encapsulating alpha-tocopherol acetate,. University of Nebraska - Lincoln, Food Science and Technology Department, Master Thesis(Printed).
  • Nawirska A, Kwasniewska M, 2005. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem., 91: 221–225.
  • Okelo AP, 2012. Mechanical, thermal, diffusion and degradation properties of high density polyethylene and cellulose blends. Kenyatta University, Master of science Thesis(Prnted).
  • Oreopoulou V, Tzia C, 2007. Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants, In V. Oreopoulou, & W. Russ (Eds.), Utilization of by-products and treatment of waste in the food industry., Vol. 3. , pp. 209-232, New York.
  • Pinheiro ER, Silva MDA, Gonzaga LV, Amante ER, Amboni MMC, 2008. Optimization of Extraction of High-Ester Pectin from Passion Fruit Peel (Passiflora edulis Flavicarpa) with Citric Acid by using Response Surface Methodology. Bioresourse Technology, 99: 5561–5566.
  • Ray SS, Okamoto M, 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28: 1539–1641.
  • Rodsamran P, Sothornvit R, 2015. Renewable cellulose source: isolation and characterisation of cellulose from rice stubble residues. International Journal of Food Science and Technology, 50; 1953–1959.
  • Sampath UGTM, Ching YC; Chuah CH; Sabariah JJ; Lin PC, 2016. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials, 9: 991.
  • Scabio A, Fertonani HCR, Schemin MHC, Petkowicz CL, Carneiro EBB, Nogueira A, Wosiacki G, 2007. A Model for Pectin Extraction from Apple Pomace. Brazilian Jounal of Food Technology, 259-265.
  • Sharma BR, Naresh L, Dhuldhoya NC, Merchant SU, Merchant UC, 2006. An overview on pectin. Times Food Processing Journal, 44-51.
  • Shin J, Selke SEM, 2014. Food packaging, Food Processing: Principles and Applications, Second Edition. Edited by Stephanie Clark, Stephanie Jung, and Buddhi Lamsal. © 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
  • Siemann U, 2005. Solvent cast technology – a versatile tool for thin film production. Progr Colloid Polym Sci., 130: 1–14.
  • Šumigin D, Tarasova E, Krumme A, Viikna A, 2012. Influence of cellulose content on thermal properties of poly(lactic) acid/cellulose and low-density polyethylene/cellulose composites. Proc. Est. Acad. Sci., 61(3): 237-244.
  • Szymanska-Chargot M, Chylinska M, Gdula K, Koziol A, Zdunek A, 2017. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers, 9(10): 2-16.
  • Tadmor Z, Gogos CG, 2006. Principles of Polymer Processing, Wiley-Interscience, New York.
  • Thakur VK, Singha AS, Mehta JK, 2010. Renewable resource based green polymer composite: analysis and charecterization. Int J. Anal Ch., 15(3): 137-146.
  • Twari AK, Saha SN, Yadav VP, Upadhyay UK, Katiyar D, Mishra T, 2017. Extraction and Characterization of Pectin from Orange Peels. International Journal of Biotechnology and Biochemistry, 13(1): 39-47.
  • Van JS, Gama R, Morrison D, Swart S, Pletschke BI, 2013. Food processing waste: problems, current management and prospects for utilisation of the lignocellulose component through enzyme synergistic degradation. Renew Sust Energ, 26: 521–531.
  • Wang X, Chen Q, Lü X, 2016. Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloids, 38: 129-137.
  • Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS, 2007. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Comp. Struct., 77: 45-55.
  • Zhang LF, Ye XQ, Ding T, Sun XY, Xu YT, Liu DH, 2013. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 20: 222-231.
Primary Language en
Subjects Food Science and Technology
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Orcid: 0000-0003-0475-4099
Author: Seda ERSUS
Institution: EGE UNIVERSITY
Country: Turkey


Orcid: 0000-0002-2762-4169
Author: Arzu YALÇIN MELİKOĞLU (Primary Author)
Institution: EGE UNIVERSITY
Country: Turkey


Orcid: 0000-0001-6581-0854
Author: Serap CESUR
Institution: EGE UNIVERSITY
Country: Turkey


Dates

Application Date : February 19, 2019
Acceptance Date : October 8, 2019
Publication Date : March 1, 2020

Bibtex @review { jist528965, journal = {Journal of the Institute of Science and Technology}, issn = {2146-0574}, eissn = {2536-4618}, address = {}, publisher = {Igdir University}, year = {2020}, volume = {10}, pages = {250 - 259}, doi = {10.21597/jist.528965}, title = {Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes}, key = {cite}, author = {ERSUS, Seda and YALÇIN MELİKOĞLU, Arzu and CESUR, Serap} }
APA ERSUS, S , YALÇIN MELİKOĞLU, A , CESUR, S . (2020). Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes. Journal of the Institute of Science and Technology , 10 (1) , 250-259 . DOI: 10.21597/jist.528965
MLA ERSUS, S , YALÇIN MELİKOĞLU, A , CESUR, S . "Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes". Journal of the Institute of Science and Technology 10 (2020 ): 250-259 <https://dergipark.org.tr/en/pub/jist/issue/52503/528965>
Chicago ERSUS, S , YALÇIN MELİKOĞLU, A , CESUR, S . "Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes". Journal of the Institute of Science and Technology 10 (2020 ): 250-259
RIS TY - JOUR T1 - Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes AU - Seda ERSUS , Arzu YALÇIN MELİKOĞLU , Serap CESUR Y1 - 2020 PY - 2020 N1 - doi: 10.21597/jist.528965 DO - 10.21597/jist.528965 T2 - Journal of the Institute of Science and Technology JF - Journal JO - JOR SP - 250 EP - 259 VL - 10 IS - 1 SN - 2146-0574-2536-4618 M3 - doi: 10.21597/jist.528965 UR - https://doi.org/10.21597/jist.528965 Y2 - 2019 ER -
EndNote %0 Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes %A Seda ERSUS , Arzu YALÇIN MELİKOĞLU , Serap CESUR %T Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes %D 2020 %J Journal of the Institute of Science and Technology %P 2146-0574-2536-4618 %V 10 %N 1 %R doi: 10.21597/jist.528965 %U 10.21597/jist.528965
ISNAD ERSUS, Seda , YALÇIN MELİKOĞLU, Arzu , CESUR, Serap . "Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes". Journal of the Institute of Science and Technology 10 / 1 (March 2020): 250-259 . https://doi.org/10.21597/jist.528965
AMA ERSUS S , YALÇIN MELİKOĞLU A , CESUR S . Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes. Iğdır Üniv. Fen Bil Enst. Der.. 2020; 10(1): 250-259.
Vancouver ERSUS S , YALÇIN MELİKOĞLU A , CESUR S . Production of Biocomposite Packaging Materials From Fruit Juice Processing Wastes. Journal of the Institute of Science and Technology. 2020; 10(1): 259-250.