Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions
Year 2020,
Volume: 10 Issue: 2, 828 - 837, 01.06.2020
Mehmet Yusuf Orcan
,
Filiz Akbaş
Abstract
In a local rice cultivar (Karacadağ), physiological and biochemical changes caused by different salt types (NaCI, CaCI2, MgCI2) and their concentrations (25, 50, 75, 150, 300 mM) were investigated under stress conditions. The germination percentage was not affected at low concentrations in each of 3 types salt tested but it decreased significantly as the concentration increased. In development stages of seedling, it was determined that as the concentration increased in all salt types, plant growth and relative water content (RWC) decreased. Salinity was mostly affected the photosynthetic pigment contents of the plants and there was a difference significantly between the results according to the salt concentration. In general, it was determined that malondialdehyde (MDA) content increased depending on the concentration in all salt types that tested. The highest cell membrane damage was found in the 75 mM application of CaCI2 with 4.1820 μmol /g MDA. As a result, it was determined that germination and seedling development stages were negatively affected in the salt types tested, especially at high concentrations.
Supporting Institution
Batman Üniversitesi
Project Number
BTÜBAP-2016-Yüksek Lisans-9
Thanks
This work is part of the BTÜBAP-2016-Yüksek Lisans-9 project financially supported by Batman University-Scientific Research Projects Coordinator the Ministry of Science. We express our sincerest gratitude to them for their support.
References
- Akay H, 2010. Çeltikte farklı somatik explantlardan kallus oluşumunun ve bitki elde etme potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü. Samsun. 2-3
- Ali Y, Aslam Z, Ashraf MY, Tahir GR, 2004. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown undersaline environment, Int. J. Environ. Sci. Technol., 1: 221–225.
- Arnon DI, 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1–15
- Asch F, Wopereis MCS, 2001. Responses of field grown irrigated rice cultivars to varying levels of flood water salinity in a semiarid environment. Field Crops Research, 70: 127-137
- Barr HD, Weatherley PE, 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci., 15: 413-428.
- Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H, 2012. Callus ınduction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agronomy, 1-8
- Demiral T, Türkan I, 2004. Does exogenous glycinebetaine affect antioksidative system of rice seedlings under NaCI treatment, Journal of Plant Physiology, 161: 1089-1100
- Demiral T, Türkan I, 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247–257
- Ellialtıoğlu Ş, Tıpırdamaz R, 1998. Doku kültürünün tuz stresine dayanıklılıkta kullanımı. Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu. 22-26 Haziran. E.Ü. Ziraat Fakültesi, E.Ü. Bilim–Teknoloji Uygulama ve Araştırma Merkezi, Bornova – İzmir, 234 s
- Garcia AB, Almeida- Engler J, Lyer S, Gerats T, Montagu MV, Caplan AB, 1997. Effects of osmoprotectants upon NaCI stres in rice, Plant Physiology, 115: 159-169p.
- Hossain AA, Halim MA, Hossain F, Meher-Niger MA, 2006. Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.), Bangladesh J. Bot., 35: 9–15.
- Kaya B, 2013. Karacadağ Yerel ve Osmancık-97 Çeltik Varyetelerinin Bazı Yabancı Otlara Karşı Rekabet Yeteneklerinin Araştırılması. Yüksek Lisans Tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır
- Khan MH, Panda SK, 2008. Alterations in root lipid peroxidation and antioxidative responsesin two rice cultivars under NaCl-salinity stress, Acta Physiologiae Plantarum, 30: 81–89.
- Koyuncu N, 2008. Türkiye’de Yetiştirilen Ekmeklik ve Makarnalık Buğday (Triticum spp.) Çeşitlerinin in vitro Koşullarda Tuza Toleranslarının Belirlenmesi. Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı.
- Koyuncu N, 2012. Bazı Makarnalık buğday (T. durum Desf.) çeşitlerinin in vitro koşullarda yüksek tuz dozlarına tepkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 21: 70-74
- Kuşvuran Ş, 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, Doktora tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 356 sayfa.
- Mitsuya S, Kawasaki M, Taniguchi M, Miyake H, 2003. Relationship between salinity induced damages and aging in rice leaf tissues, Plant Prod. Sci., 6: 213-218
- Ohkawa H, Ohishi N, Yagi Y, 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351-358
- Orcan P, Işıkalan Ç, Akbaş F, 2019. Evaluation of salinity Tolerance in Rice (Oryza sativa L.) using water potential, biomass, membran damage and osmoprotective compound. Fresenius Bulletin. 28(4A): 3313-3323
- Rajakumar R, 2013. A study on effect of salt stress in the seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro condition. Asian Journal of Plant Science and Research, 3: 20-25
- Sürek H, 2002. Çeltik Tarımı. Hasad Yayınları. İstanbul
- Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, Van Dongen JT, Kopka J, 2012. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci., 182: 101–111
- Tatar Ö, 2006. Tuzluluğun Bazı Çeltik Çeşit Ve Hatlarının Çimlenme ile Fide Gelişimi Üzerine Etkisi. Yüksek Lisans Tezi Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir
- Tun NN, Heiligtag B, Kleeberg A, Richter C, 2003. Technologia and institutional innovations for sustainable rural development. Deutscher Tropentag, October 810, Göttingen.
- Turan MA, Türkmen N, Taban N, 2007. Effect of NaCI on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants, J. Agron., 6, 378–381.
- Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G, 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties, Plant Science, 165: 1411–1418.
- Yokaş İ, Tuna AL, Bürün B, Altunlu H, Altan F, Kaya C, 2008. Responses of the tomato (Lycopersicon esculentum Mill.) plant to exposure to different salt forms and rates. Turk J Agric For, 32: 319-329.
Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions
Year 2020,
Volume: 10 Issue: 2, 828 - 837, 01.06.2020
Mehmet Yusuf Orcan
,
Filiz Akbaş
Abstract
In a local rice cultivar (Karacadağ), physiological and biochemical changes caused by different salt types (NaCI, CaCI2, MgCI2) and their concentrations (25, 50, 75, 150, 300 mM) were investigated under stress conditions. The germination percentage was not affected at low concentrations in each of 3 types salt tested but it decreased significantly as the concentration increased. In development stages of seedling, it was determined that as the concentration increased in all salt types, plant growth and relative water content (RWC) decreased. Salinity was mostly affected the photosynthetic pigment contents of the plants and there was a difference significantly between the results according to the salt concentration. In general, it was determined that malondialdehyde (MDA) content increased depending on the concentration in all salt types that tested. The highest cell membrane damage was found in the 75 mM application of CaCI2 with 4.1820 μmol /g MDA. As a result, it was determined that germination and seedling development stages were negatively affected in the salt types tested, especially at high concentrations.
Project Number
BTÜBAP-2016-Yüksek Lisans-9
References
- Akay H, 2010. Çeltikte farklı somatik explantlardan kallus oluşumunun ve bitki elde etme potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü. Samsun. 2-3
- Ali Y, Aslam Z, Ashraf MY, Tahir GR, 2004. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown undersaline environment, Int. J. Environ. Sci. Technol., 1: 221–225.
- Arnon DI, 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1–15
- Asch F, Wopereis MCS, 2001. Responses of field grown irrigated rice cultivars to varying levels of flood water salinity in a semiarid environment. Field Crops Research, 70: 127-137
- Barr HD, Weatherley PE, 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci., 15: 413-428.
- Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H, 2012. Callus ınduction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agronomy, 1-8
- Demiral T, Türkan I, 2004. Does exogenous glycinebetaine affect antioksidative system of rice seedlings under NaCI treatment, Journal of Plant Physiology, 161: 1089-1100
- Demiral T, Türkan I, 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247–257
- Ellialtıoğlu Ş, Tıpırdamaz R, 1998. Doku kültürünün tuz stresine dayanıklılıkta kullanımı. Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu. 22-26 Haziran. E.Ü. Ziraat Fakültesi, E.Ü. Bilim–Teknoloji Uygulama ve Araştırma Merkezi, Bornova – İzmir, 234 s
- Garcia AB, Almeida- Engler J, Lyer S, Gerats T, Montagu MV, Caplan AB, 1997. Effects of osmoprotectants upon NaCI stres in rice, Plant Physiology, 115: 159-169p.
- Hossain AA, Halim MA, Hossain F, Meher-Niger MA, 2006. Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.), Bangladesh J. Bot., 35: 9–15.
- Kaya B, 2013. Karacadağ Yerel ve Osmancık-97 Çeltik Varyetelerinin Bazı Yabancı Otlara Karşı Rekabet Yeteneklerinin Araştırılması. Yüksek Lisans Tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır
- Khan MH, Panda SK, 2008. Alterations in root lipid peroxidation and antioxidative responsesin two rice cultivars under NaCl-salinity stress, Acta Physiologiae Plantarum, 30: 81–89.
- Koyuncu N, 2008. Türkiye’de Yetiştirilen Ekmeklik ve Makarnalık Buğday (Triticum spp.) Çeşitlerinin in vitro Koşullarda Tuza Toleranslarının Belirlenmesi. Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı.
- Koyuncu N, 2012. Bazı Makarnalık buğday (T. durum Desf.) çeşitlerinin in vitro koşullarda yüksek tuz dozlarına tepkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 21: 70-74
- Kuşvuran Ş, 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, Doktora tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 356 sayfa.
- Mitsuya S, Kawasaki M, Taniguchi M, Miyake H, 2003. Relationship between salinity induced damages and aging in rice leaf tissues, Plant Prod. Sci., 6: 213-218
- Ohkawa H, Ohishi N, Yagi Y, 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351-358
- Orcan P, Işıkalan Ç, Akbaş F, 2019. Evaluation of salinity Tolerance in Rice (Oryza sativa L.) using water potential, biomass, membran damage and osmoprotective compound. Fresenius Bulletin. 28(4A): 3313-3323
- Rajakumar R, 2013. A study on effect of salt stress in the seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro condition. Asian Journal of Plant Science and Research, 3: 20-25
- Sürek H, 2002. Çeltik Tarımı. Hasad Yayınları. İstanbul
- Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, Van Dongen JT, Kopka J, 2012. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci., 182: 101–111
- Tatar Ö, 2006. Tuzluluğun Bazı Çeltik Çeşit Ve Hatlarının Çimlenme ile Fide Gelişimi Üzerine Etkisi. Yüksek Lisans Tezi Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir
- Tun NN, Heiligtag B, Kleeberg A, Richter C, 2003. Technologia and institutional innovations for sustainable rural development. Deutscher Tropentag, October 810, Göttingen.
- Turan MA, Türkmen N, Taban N, 2007. Effect of NaCI on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants, J. Agron., 6, 378–381.
- Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G, 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties, Plant Science, 165: 1411–1418.
- Yokaş İ, Tuna AL, Bürün B, Altunlu H, Altan F, Kaya C, 2008. Responses of the tomato (Lycopersicon esculentum Mill.) plant to exposure to different salt forms and rates. Turk J Agric For, 32: 319-329.