Research Article
BibTex RIS Cite

Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions

Year 2020, Volume: 10 Issue: 2, 828 - 837, 01.06.2020
https://doi.org/10.21597/jist.611777

Abstract

In a local rice cultivar (Karacadağ), physiological and biochemical changes caused by different salt types (NaCI, CaCI2, MgCI2) and their concentrations (25, 50, 75, 150, 300 mM) were investigated under stress conditions. The germination percentage was not affected at low concentrations in each of 3 types salt tested but it decreased significantly as the concentration increased. In development stages of seedling, it was determined that as the concentration increased in all salt types, plant growth and relative water content (RWC) decreased. Salinity was mostly affected the photosynthetic pigment contents of the plants and there was a difference significantly between the results according to the salt concentration. In general, it was determined that malondialdehyde (MDA) content increased depending on the concentration in all salt types that tested. The highest cell membrane damage was found in the 75 mM application of CaCI2 with 4.1820 μmol /g MDA. As a result, it was determined that germination and seedling development stages were negatively affected in the salt types tested, especially at high concentrations.

Supporting Institution

Batman Üniversitesi

Project Number

BTÜBAP-2016-Yüksek Lisans-9

Thanks

This work is part of the BTÜBAP-2016-Yüksek Lisans-9 project financially supported by Batman University-Scientific Research Projects Coordinator the Ministry of Science. We express our sincerest gratitude to them for their support.

References

  • Akay H, 2010. Çeltikte farklı somatik explantlardan kallus oluşumunun ve bitki elde etme potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü. Samsun. 2-3
  • Ali Y, Aslam Z, Ashraf MY, Tahir GR, 2004. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown undersaline environment, Int. J. Environ. Sci. Technol., 1: 221–225.
  • Arnon DI, 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1–15
  • Asch F, Wopereis MCS, 2001. Responses of field grown irrigated rice cultivars to varying levels of flood water salinity in a semiarid environment. Field Crops Research, 70: 127-137
  • Barr HD, Weatherley PE, 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci., 15: 413-428.
  • Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H, 2012. Callus ınduction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agronomy, 1-8
  • Demiral T, Türkan I, 2004. Does exogenous glycinebetaine affect antioksidative system of rice seedlings under NaCI treatment, Journal of Plant Physiology, 161: 1089-1100
  • Demiral T, Türkan I, 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247–257
  • Ellialtıoğlu Ş, Tıpırdamaz R, 1998. Doku kültürünün tuz stresine dayanıklılıkta kullanımı. Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu. 22-26 Haziran. E.Ü. Ziraat Fakültesi, E.Ü. Bilim–Teknoloji Uygulama ve Araştırma Merkezi, Bornova – İzmir, 234 s
  • Garcia AB, Almeida- Engler J, Lyer S, Gerats T, Montagu MV, Caplan AB, 1997. Effects of osmoprotectants upon NaCI stres in rice, Plant Physiology, 115: 159-169p.
  • Hossain AA, Halim MA, Hossain F, Meher-Niger MA, 2006. Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.), Bangladesh J. Bot., 35: 9–15.
  • Kaya B, 2013. Karacadağ Yerel ve Osmancık-97 Çeltik Varyetelerinin Bazı Yabancı Otlara Karşı Rekabet Yeteneklerinin Araştırılması. Yüksek Lisans Tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır
  • Khan MH, Panda SK, 2008. Alterations in root lipid peroxidation and antioxidative responsesin two rice cultivars under NaCl-salinity stress, Acta Physiologiae Plantarum, 30: 81–89.
  • Koyuncu N, 2008. Türkiye’de Yetiştirilen Ekmeklik ve Makarnalık Buğday (Triticum spp.) Çeşitlerinin in vitro Koşullarda Tuza Toleranslarının Belirlenmesi. Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı.
  • Koyuncu N, 2012. Bazı Makarnalık buğday (T. durum Desf.) çeşitlerinin in vitro koşullarda yüksek tuz dozlarına tepkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 21: 70-74
  • Kuşvuran Ş, 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, Doktora tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 356 sayfa.
  • Mitsuya S, Kawasaki M, Taniguchi M, Miyake H, 2003. Relationship between salinity induced damages and aging in rice leaf tissues, Plant Prod. Sci., 6: 213-218
  • Ohkawa H, Ohishi N, Yagi Y, 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351-358
  • Orcan P, Işıkalan Ç, Akbaş F, 2019. Evaluation of salinity Tolerance in Rice (Oryza sativa L.) using water potential, biomass, membran damage and osmoprotective compound. Fresenius Bulletin. 28(4A): 3313-3323
  • Rajakumar R, 2013. A study on effect of salt stress in the seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro condition. Asian Journal of Plant Science and Research, 3: 20-25
  • Sürek H, 2002. Çeltik Tarımı. Hasad Yayınları. İstanbul
  • Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, Van Dongen JT, Kopka J, 2012. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci., 182: 101–111
  • Tatar Ö, 2006. Tuzluluğun Bazı Çeltik Çeşit Ve Hatlarının Çimlenme ile Fide Gelişimi Üzerine Etkisi. Yüksek Lisans Tezi Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir
  • Tun NN, Heiligtag B, Kleeberg A, Richter C, 2003. Technologia and institutional innovations for sustainable rural development. Deutscher Tropentag, October 810, Göttingen.
  • Turan MA, Türkmen N, Taban N, 2007. Effect of NaCI on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants, J. Agron., 6, 378–381.
  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G, 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties, Plant Science, 165: 1411–1418.
  • Yokaş İ, Tuna AL, Bürün B, Altunlu H, Altan F, Kaya C, 2008. Responses of the tomato (Lycopersicon esculentum Mill.) plant to exposure to different salt forms and rates. Turk J Agric For, 32: 319-329.

Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions

Year 2020, Volume: 10 Issue: 2, 828 - 837, 01.06.2020
https://doi.org/10.21597/jist.611777

Abstract

In a local rice cultivar (Karacadağ), physiological and biochemical changes caused by different salt types (NaCI, CaCI2, MgCI2) and their concentrations (25, 50, 75, 150, 300 mM) were investigated under stress conditions. The germination percentage was not affected at low concentrations in each of 3 types salt tested but it decreased significantly as the concentration increased. In development stages of seedling, it was determined that as the concentration increased in all salt types, plant growth and relative water content (RWC) decreased. Salinity was mostly affected the photosynthetic pigment contents of the plants and there was a difference significantly between the results according to the salt concentration. In general, it was determined that malondialdehyde (MDA) content increased depending on the concentration in all salt types that tested. The highest cell membrane damage was found in the 75 mM application of CaCI2 with 4.1820 μmol /g MDA. As a result, it was determined that germination and seedling development stages were negatively affected in the salt types tested, especially at high concentrations.

Project Number

BTÜBAP-2016-Yüksek Lisans-9

References

  • Akay H, 2010. Çeltikte farklı somatik explantlardan kallus oluşumunun ve bitki elde etme potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü. Samsun. 2-3
  • Ali Y, Aslam Z, Ashraf MY, Tahir GR, 2004. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown undersaline environment, Int. J. Environ. Sci. Technol., 1: 221–225.
  • Arnon DI, 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1–15
  • Asch F, Wopereis MCS, 2001. Responses of field grown irrigated rice cultivars to varying levels of flood water salinity in a semiarid environment. Field Crops Research, 70: 127-137
  • Barr HD, Weatherley PE, 1962. A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust. J. Biol. Sci., 15: 413-428.
  • Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H, 2012. Callus ınduction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agronomy, 1-8
  • Demiral T, Türkan I, 2004. Does exogenous glycinebetaine affect antioksidative system of rice seedlings under NaCI treatment, Journal of Plant Physiology, 161: 1089-1100
  • Demiral T, Türkan I, 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53: 247–257
  • Ellialtıoğlu Ş, Tıpırdamaz R, 1998. Doku kültürünün tuz stresine dayanıklılıkta kullanımı. Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu. 22-26 Haziran. E.Ü. Ziraat Fakültesi, E.Ü. Bilim–Teknoloji Uygulama ve Araştırma Merkezi, Bornova – İzmir, 234 s
  • Garcia AB, Almeida- Engler J, Lyer S, Gerats T, Montagu MV, Caplan AB, 1997. Effects of osmoprotectants upon NaCI stres in rice, Plant Physiology, 115: 159-169p.
  • Hossain AA, Halim MA, Hossain F, Meher-Niger MA, 2006. Effects of NaCl salinity on some physiological characters of wheat (Triticum aestivum L.), Bangladesh J. Bot., 35: 9–15.
  • Kaya B, 2013. Karacadağ Yerel ve Osmancık-97 Çeltik Varyetelerinin Bazı Yabancı Otlara Karşı Rekabet Yeteneklerinin Araştırılması. Yüksek Lisans Tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır
  • Khan MH, Panda SK, 2008. Alterations in root lipid peroxidation and antioxidative responsesin two rice cultivars under NaCl-salinity stress, Acta Physiologiae Plantarum, 30: 81–89.
  • Koyuncu N, 2008. Türkiye’de Yetiştirilen Ekmeklik ve Makarnalık Buğday (Triticum spp.) Çeşitlerinin in vitro Koşullarda Tuza Toleranslarının Belirlenmesi. Doktora Tezi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Tarla Bitkileri Anabilim Dalı.
  • Koyuncu N, 2012. Bazı Makarnalık buğday (T. durum Desf.) çeşitlerinin in vitro koşullarda yüksek tuz dozlarına tepkileri. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 21: 70-74
  • Kuşvuran Ş, 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, Doktora tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 356 sayfa.
  • Mitsuya S, Kawasaki M, Taniguchi M, Miyake H, 2003. Relationship between salinity induced damages and aging in rice leaf tissues, Plant Prod. Sci., 6: 213-218
  • Ohkawa H, Ohishi N, Yagi Y, 1979. Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351-358
  • Orcan P, Işıkalan Ç, Akbaş F, 2019. Evaluation of salinity Tolerance in Rice (Oryza sativa L.) using water potential, biomass, membran damage and osmoprotective compound. Fresenius Bulletin. 28(4A): 3313-3323
  • Rajakumar R, 2013. A study on effect of salt stress in the seed germination and biochemical parameters of rice (Oryza sativa L.) under in vitro condition. Asian Journal of Plant Science and Research, 3: 20-25
  • Sürek H, 2002. Çeltik Tarımı. Hasad Yayınları. İstanbul
  • Siahpoosh MR, Sanchez DH, Schlereth A, Scofield GN, Furbank RT, Van Dongen JT, Kopka J, 2012. Modification of OsSUT1 gene expression modulates the salt response of rice Oryza sativa cv. Taipei 309. Plant Sci., 182: 101–111
  • Tatar Ö, 2006. Tuzluluğun Bazı Çeltik Çeşit Ve Hatlarının Çimlenme ile Fide Gelişimi Üzerine Etkisi. Yüksek Lisans Tezi Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir
  • Tun NN, Heiligtag B, Kleeberg A, Richter C, 2003. Technologia and institutional innovations for sustainable rural development. Deutscher Tropentag, October 810, Göttingen.
  • Turan MA, Türkmen N, Taban N, 2007. Effect of NaCI on stomatal resistance and proline, chlorophyll, Na, Cl and K concentrations of lentil plants, J. Agron., 6, 378–381.
  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G, 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties, Plant Science, 165: 1411–1418.
  • Yokaş İ, Tuna AL, Bürün B, Altunlu H, Altan F, Kaya C, 2008. Responses of the tomato (Lycopersicon esculentum Mill.) plant to exposure to different salt forms and rates. Turk J Agric For, 32: 319-329.
There are 27 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Mehmet Yusuf Orcan 0000-0002-5953-1178

Filiz Akbaş 0000-0003-0623-5524

Project Number BTÜBAP-2016-Yüksek Lisans-9
Publication Date June 1, 2020
Submission Date August 27, 2019
Acceptance Date December 14, 2019
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Orcan, M. Y., & Akbaş, F. (2020). Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 828-837. https://doi.org/10.21597/jist.611777
AMA Orcan MY, Akbaş F. Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions. J. Inst. Sci. and Tech. June 2020;10(2):828-837. doi:10.21597/jist.611777
Chicago Orcan, Mehmet Yusuf, and Filiz Akbaş. “Evaluation of Physiological and Biochemical Responses Against to Salinity in Local Rice (Oryza Sativa L.) under in Vitro Conditions”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10, no. 2 (June 2020): 828-37. https://doi.org/10.21597/jist.611777.
EndNote Orcan MY, Akbaş F (June 1, 2020) Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10 2 828–837.
IEEE M. Y. Orcan and F. Akbaş, “Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions”, J. Inst. Sci. and Tech., vol. 10, no. 2, pp. 828–837, 2020, doi: 10.21597/jist.611777.
ISNAD Orcan, Mehmet Yusuf - Akbaş, Filiz. “Evaluation of Physiological and Biochemical Responses Against to Salinity in Local Rice (Oryza Sativa L.) under in Vitro Conditions”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 10/2 (June 2020), 828-837. https://doi.org/10.21597/jist.611777.
JAMA Orcan MY, Akbaş F. Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions. J. Inst. Sci. and Tech. 2020;10:828–837.
MLA Orcan, Mehmet Yusuf and Filiz Akbaş. “Evaluation of Physiological and Biochemical Responses Against to Salinity in Local Rice (Oryza Sativa L.) under in Vitro Conditions”. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 10, no. 2, 2020, pp. 828-37, doi:10.21597/jist.611777.
Vancouver Orcan MY, Akbaş F. Evaluation of Physiological and Biochemical Responses against to Salinity in Local Rice (Oryza sativa L.) under in vitro Conditions. J. Inst. Sci. and Tech. 2020;10(2):828-37.