Research Article
BibTex RIS Cite

Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi

Year 2021, Volume: 11 Issue: 1, 393 - 401, 01.03.2021
https://doi.org/10.21597/jist.746693

Abstract

Bu çalışmada ilk olarak epoksitlenmiş soya yağı, çift bağ içeren bir alkol ile modifiye edilmiştir. Çıkan ürün daha sonra çapraz bağlı hale getirilmiştir. Çapraz bağlı malzeme elde edebilmek için uygun polimerizasyon yöntemlerinden fotopolimerizasyon şeçilmiştir. Sentezlenen monomer, epoksi reçine olarak anılmıştır. Reçine kürleşme reaksiyonları ile kaplama ya da film olarak kullanılabilecek malzeme elde edilmiştir. İlk basamakta epoksitlenmiş soya yağında bulunan epoksi halkasının açılması sağlanmıştır ve alil alkol açılan zincire bağlanmıştır. Bu ara ürün doymamış karbon-karbon çift bağı ve hidroksil grubu gibi fonksiyonel gruplar içermektedir. Epoksi halka açılma reaksiyonu FT-IR analizi ve iyot sayısı tayini ile takip edilmiştir. Alillenmiş epoksitlenmiş soya yağı GPC, 1H-NMR, 13C-NMR ve epoksi oksijen tayini ile karakterize edilmiştir. Reaksiyonda yaklaşık %50 verime ulaşılmıştır. Alil alkol üzerinde bulunan doymamış karbon-karbon çifte bağlarının reaktif olması nedeniyle, fotopolimerizasyon reaksiyonu için uygundur. İkinci basamakta alilenmiş epoksitlenmiş yağı ile 4 fonksiyonel tiyol grubu içeren tetratiyol ve uygun fotobaşlatıcı karışımları hazırlanmıştır. Doymamış karbon-karbon çift bağlarının fonksiyonel –SH gruplarına mol cinsinden oranı 1:1 olarak alınarak fotobaşlatıcı oranı değiştirilerek örnekler hazırlanmıştır. Poli-en ve politiyol karışımlarının fotopolimerizasyonu ile hazırlanan malzeme örneklerinin kimyasal, mekanik ve termal özellikleri karşılaştırılmıştır.

Supporting Institution

Kocaeli Üniversitesi

References

  • Aoyagi S, Shimasaki T, Teramoto M, Shibata M, 2018. Bio-based polymer networks by thiol-ene photopolymerization of allylated L-glutamic acids and L-tyrosines. European Polymer Journal, 101: 151-158.
  • Bassett AW, La Scala JJ, Stanzione JF, 2016. Richard P. Wool's contributions to sustainable polymers from 2000 to 2015. Journal of Applied Polymer Science, 133(45): 43801.
  • Biermann U, Bornscheuer U, Meier AMR, Metzger JO,Schäfer HJ, 2011. Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie International Edition, 50(17): 3854-3871.
  • Chandrashekhara K, Sundararaman S, Flanigan V, Kapila S, 2005. Affordable composites using renewable materials. Mater. Sci. Eng., A A412(1-2): 2-6.
  • Chang SP, 1979. Allyl esters and allyl epoxy esters from crambe oil. J. Am. Oil Chem. So C., 56(9): 855-856.
  • Chen Z, Chisholm BJ, Patani R, Wu JF, Fernando S, Jogodzinski K, Webster DC, 2010. Soy-based UV-curable thiol-ene coatings. J. Coat. Technol. Res., 7(5): 603-613.
  • Eren T, Küsefoğlu SH, 2004. Hydroxymethylation and polymerization of plant oil triglycerides. Journal of Applied Polymer Science, 91(6): 4037-4046.
  • Eren T, Küsefoğlu SH, 2004. Synthesis and polymerization of the bromoacrylated plant oil triglycerides to rigid, flame-retardant polymers. Journal of Applied Polymer Science, 91(4): 2700-2710.
  • Esen H, Küsefoğlu S, Wool R, 2007. Photolytic and free-radical polymerization of monomethyl maleate esters of epoxidized plant oil triglycerides. Journal of Applied Polymer Science, 103(1): 626-633.
  • Esen H, Küsefoğlu SH, 2003. Photolytic and free-radical polymerization of cinnamate esters of epoxidized plant oil triglycerides. Journal of Applied Polymer Science, 89(14): 3882-3888.
  • Firger SM, Shabanova AG, Khenven OY, Bryukhanova TA, Gotshtein KL, Klygina RV, 1984. Preparation of modified water-thinned alkyd-epoxy oligomers. Lakokras. Mater. Ikh Primen., (1): 10-11.
  • Gan LH, Ooi KS, Goh SH, Chee KK, 1992. Polymerization of allyl esters derived from long-chain fatty acids and palm olein. Journal of Applied Polymer Science, 46(2): 329-338.
  • Guzmán D, Ramis X, Fernández-Francos X, Flor DS, Serra A 2017. New bio-based materials obtained by thiol-ene/thiol-epoxy dual curing click pro Cedures from eugenol derivates. European Polymer Journal, 93: 530-544.
  • Guzmán D, Serra A, Ramis X, Fernández-Francos X, Flor DS, 2019. Fully renewable thermosets based on bis-eugenol prepared by thiol-click chemistry. Reactive and Functional Polymers, 136: 153-166.
  • Hoyle CE, Lee TY, Roper T, 2004. Thiol–enes: Chemistry of the past with promise for the future. Journal of Polymer Science Part A: Polymer Chemistry, 42(21): 5301-5338.
  • Dusek K, 1982. Developments in Polymerization. Applied Science Publishers, Londra-İngiltere.
  • Luo Q, Liu M, Xu YJ, Ionescu M, Petrovic ZS, 2011. Thermosetting Allyl Resins Derived from Soybean Oil. Macromolecules, 44(18): 7149-7157.
  • Morgan CR, Magnotta F, Ketley AD, 1977. Thiol/ene photo Curable polymers. Journal of Polymer Science: Polymer Chemistry Edition, 15(3): 627-645.
  • Nagashima S, Shimasaki T, Teramoto N, Shibata M, 2014. Trehalose-incorporated polymer network by thiol-ene photopolymerization. Polymer Journal, 46(10): 728-735.
  • Nagendrappa G, 2002. Organic synthesis using clay catalysts. Resonance, 7(1): 64-77.
  • Roffey C.G, 1997. Photogeneration of reactive species for UV curing. Wiley, New York- ABD.
  • Schnabel W, 2007. Photopolymerization, Polymers and Light Fundamentals and Technical Applications Wiley-VCH Verlag GmbH & Co. KGaA, s.273-304, Weinheim-Almanya.
  • Shibata M, Sugane K, Satoh A, 2018. Photo-thermally cured eugenol-derived epoxy resins by simultaneous thiol-ene/thiol-epoxy/thiol-maleimide triple “click” reactions. Journal of Polymer Research, 25(11): 234-244.
  • Shirsalkar MM, 1981. Developments in water-borne paints at Regional Research Laboratory (Hyderabad) (RRL(H)). J. Colour So C., 20(2): 64-71.
  • Silverstein RWF, Kiemle D, Bryce D, 2014. Spectrometric Identification of Organic Compounds. Wiley, New York-ABD.
  • Wang T, 2011. Soybean Oil. Vegetable Oils in Food Technology: 59-105.
  • Weil ED, Pappas SP, 1993. Radiation curing: Science and technology, Plenum Press, New York-ABD
  • Yoshimura T, Shimasaki T, Teramoto N, Shibata M, 2015. Bio-based polymer networks by thiol-ene photopolymerizations of allyl-etherified eugenol derivatives. European Polymer Journal 67: 397-408.

Synthesis and Photopolymerization of Monomer Obtained from Plant Oils

Year 2021, Volume: 11 Issue: 1, 393 - 401, 01.03.2021
https://doi.org/10.21597/jist.746693

Abstract

This research contains the modification of epoxidized soybean oil as a first step and consecutive the crosslinking of the product. Photopolymerization was chosen to be the best alternative method for polymerization. The obtained monomer, referred as epoxy resin, was utilized to form a material that can be used as coating. Epoxidized soybean oil was reacted with allyl alcohol and the reaction was followed by FT-IR and iodine number values. The product was characterized NMR techniques, GPC and oxirane oxygen value. About 50 % of yield was obtained. In the second part, allyl alcohol modified soybean oil was polymerized with a tetra thiol monomer under ultraviolet light. Different photo initiator levels and their effects were investigated over the crosslinked product. The ratio of epoxy group to thiol (-SH) functional group was selected to be 1:1. The properties of the material obtained was characterized by chemical, mechanical and thermal methods.

References

  • Aoyagi S, Shimasaki T, Teramoto M, Shibata M, 2018. Bio-based polymer networks by thiol-ene photopolymerization of allylated L-glutamic acids and L-tyrosines. European Polymer Journal, 101: 151-158.
  • Bassett AW, La Scala JJ, Stanzione JF, 2016. Richard P. Wool's contributions to sustainable polymers from 2000 to 2015. Journal of Applied Polymer Science, 133(45): 43801.
  • Biermann U, Bornscheuer U, Meier AMR, Metzger JO,Schäfer HJ, 2011. Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie International Edition, 50(17): 3854-3871.
  • Chandrashekhara K, Sundararaman S, Flanigan V, Kapila S, 2005. Affordable composites using renewable materials. Mater. Sci. Eng., A A412(1-2): 2-6.
  • Chang SP, 1979. Allyl esters and allyl epoxy esters from crambe oil. J. Am. Oil Chem. So C., 56(9): 855-856.
  • Chen Z, Chisholm BJ, Patani R, Wu JF, Fernando S, Jogodzinski K, Webster DC, 2010. Soy-based UV-curable thiol-ene coatings. J. Coat. Technol. Res., 7(5): 603-613.
  • Eren T, Küsefoğlu SH, 2004. Hydroxymethylation and polymerization of plant oil triglycerides. Journal of Applied Polymer Science, 91(6): 4037-4046.
  • Eren T, Küsefoğlu SH, 2004. Synthesis and polymerization of the bromoacrylated plant oil triglycerides to rigid, flame-retardant polymers. Journal of Applied Polymer Science, 91(4): 2700-2710.
  • Esen H, Küsefoğlu S, Wool R, 2007. Photolytic and free-radical polymerization of monomethyl maleate esters of epoxidized plant oil triglycerides. Journal of Applied Polymer Science, 103(1): 626-633.
  • Esen H, Küsefoğlu SH, 2003. Photolytic and free-radical polymerization of cinnamate esters of epoxidized plant oil triglycerides. Journal of Applied Polymer Science, 89(14): 3882-3888.
  • Firger SM, Shabanova AG, Khenven OY, Bryukhanova TA, Gotshtein KL, Klygina RV, 1984. Preparation of modified water-thinned alkyd-epoxy oligomers. Lakokras. Mater. Ikh Primen., (1): 10-11.
  • Gan LH, Ooi KS, Goh SH, Chee KK, 1992. Polymerization of allyl esters derived from long-chain fatty acids and palm olein. Journal of Applied Polymer Science, 46(2): 329-338.
  • Guzmán D, Ramis X, Fernández-Francos X, Flor DS, Serra A 2017. New bio-based materials obtained by thiol-ene/thiol-epoxy dual curing click pro Cedures from eugenol derivates. European Polymer Journal, 93: 530-544.
  • Guzmán D, Serra A, Ramis X, Fernández-Francos X, Flor DS, 2019. Fully renewable thermosets based on bis-eugenol prepared by thiol-click chemistry. Reactive and Functional Polymers, 136: 153-166.
  • Hoyle CE, Lee TY, Roper T, 2004. Thiol–enes: Chemistry of the past with promise for the future. Journal of Polymer Science Part A: Polymer Chemistry, 42(21): 5301-5338.
  • Dusek K, 1982. Developments in Polymerization. Applied Science Publishers, Londra-İngiltere.
  • Luo Q, Liu M, Xu YJ, Ionescu M, Petrovic ZS, 2011. Thermosetting Allyl Resins Derived from Soybean Oil. Macromolecules, 44(18): 7149-7157.
  • Morgan CR, Magnotta F, Ketley AD, 1977. Thiol/ene photo Curable polymers. Journal of Polymer Science: Polymer Chemistry Edition, 15(3): 627-645.
  • Nagashima S, Shimasaki T, Teramoto N, Shibata M, 2014. Trehalose-incorporated polymer network by thiol-ene photopolymerization. Polymer Journal, 46(10): 728-735.
  • Nagendrappa G, 2002. Organic synthesis using clay catalysts. Resonance, 7(1): 64-77.
  • Roffey C.G, 1997. Photogeneration of reactive species for UV curing. Wiley, New York- ABD.
  • Schnabel W, 2007. Photopolymerization, Polymers and Light Fundamentals and Technical Applications Wiley-VCH Verlag GmbH & Co. KGaA, s.273-304, Weinheim-Almanya.
  • Shibata M, Sugane K, Satoh A, 2018. Photo-thermally cured eugenol-derived epoxy resins by simultaneous thiol-ene/thiol-epoxy/thiol-maleimide triple “click” reactions. Journal of Polymer Research, 25(11): 234-244.
  • Shirsalkar MM, 1981. Developments in water-borne paints at Regional Research Laboratory (Hyderabad) (RRL(H)). J. Colour So C., 20(2): 64-71.
  • Silverstein RWF, Kiemle D, Bryce D, 2014. Spectrometric Identification of Organic Compounds. Wiley, New York-ABD.
  • Wang T, 2011. Soybean Oil. Vegetable Oils in Food Technology: 59-105.
  • Weil ED, Pappas SP, 1993. Radiation curing: Science and technology, Plenum Press, New York-ABD
  • Yoshimura T, Shimasaki T, Teramoto N, Shibata M, 2015. Bio-based polymer networks by thiol-ene photopolymerizations of allyl-etherified eugenol derivatives. European Polymer Journal 67: 397-408.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Hüseyin Esen 0000-0001-5649-6074

Publication Date March 1, 2021
Submission Date June 1, 2020
Acceptance Date October 10, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Esen, H. (2021). Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi. Journal of the Institute of Science and Technology, 11(1), 393-401. https://doi.org/10.21597/jist.746693
AMA Esen H. Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi. J. Inst. Sci. and Tech. March 2021;11(1):393-401. doi:10.21597/jist.746693
Chicago Esen, Hüseyin. “Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi Ve Fotopolimerleşmesi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 393-401. https://doi.org/10.21597/jist.746693.
EndNote Esen H (March 1, 2021) Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi. Journal of the Institute of Science and Technology 11 1 393–401.
IEEE H. Esen, “Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 393–401, 2021, doi: 10.21597/jist.746693.
ISNAD Esen, Hüseyin. “Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi Ve Fotopolimerleşmesi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 393-401. https://doi.org/10.21597/jist.746693.
JAMA Esen H. Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi. J. Inst. Sci. and Tech. 2021;11:393–401.
MLA Esen, Hüseyin. “Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi Ve Fotopolimerleşmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 393-01, doi:10.21597/jist.746693.
Vancouver Esen H. Bitkisel Yağlardan Polimerize Olabilen Monomerin Sentezi ve Fotopolimerleşmesi. J. Inst. Sci. and Tech. 2021;11(1):393-401.