Research Article
BibTex RIS Cite

The Fabrication of Au/p-Si, Au/PVA/p-Si and Au/PVA:Gr/p-Si Schottky Barrier Diodes and The Investigation of Their Basic Electrical Properties

Year 2021, Volume: 11 Issue: 1, 157 - 168, 01.03.2021
https://doi.org/10.21597/jist.799054

Abstract

In this study, three different types of Schottky Barrier diodes were fabricated: Metal-Semiconductor (Au/p-Si) diodes, and pure polyvinyl alcohol (PVA) interface (Au/PVA/p-Si) and 3% Graphene doped PVA interface (Au/PVA:Gr/p-Si) in order to investigate and develop the effect of polymer interface material on the electrical properties of diodes. The electrical properties of the prepared diodes besides the effect of PVA and PVA:Gr interfacial material was investigated. The current-voltage characteristics of each diodes were examined at room temperature. Basic electrical parameters of Au/p-Si, Au/PVA/p-Si, and Au/PVA:Gr/p-Si Schottky Barrier diodes such as series resistance (Rs), barrier height (ΦB0), interface state density (Nss) and ideality factor (n) was obtained from Termionic Emission (TE) theory by using current-voltage data. Norde method was also used to compare the Rs and ΦB0 parameters obtained by the Thermionic Emission theory. The values of n, Rs, and ΦB0 obtained by TE method were found as 14.46, 275.33 , and 0.66 eV for Au/p-Si, 4.98, 155.58 , and 0.72 eV for Au/PVA/p-Si, while it was calculated as 5.61, 432.43, and 0.77 eV for Au/PVA:Gr/p-Si, respectively. The Rs and ΦB0 values obtained by the Norde method were obtained as 362.39 and 0.70 eV for Au/p-Si, 175.07  and 0.75 eV for Au/PVA/p-Si, while it was found as 525.21 and 0.76 eV for Au/PVA:Gr/p-Si. Values found with Norde and Termionic Emission methods are compatible with each other. Experimental results show that the PVA:Gr interface provides an improvement in the electrical parameters of MPYs.

References

  • Altındal Ş, Tunç T, Tecimer H, Yücedağ İ, 2014. Electrical and photovoltaic properties of Au/(Ni, Zn)-doped PVA/n-Si structures in dark and under 250 W illumination level. Materials Science in Semiconductor Processing, 28: 48-53.
  • Ashery A, Shaban H, Gad SA, Mansour BA, 2020. Investigation of electrical and capacitance-voltage characteristics of GO/TiO2/n-Si MOS device. Materials Science in Semiconductor Processing. 114: 105070.
  • Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Altındal Ş, 2017. Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures. Journal of Materials Science: Materials in Electronics, 28 (2): 1315-1321.
  • Buzio R, Gerbi A, He QM, Qin Y, Mu WX, Jia ZT, Tao XT, Xu GW, Long SB, 2020. Benchmarking -Ga2O3 Schottky Diodes by Nanoscale Ballistic Electron Emission Microscopy. Advanced Electronic Materials, 6 (3): 1901151.
  • Card HC, Rhoderick EH, 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4: 1589.
  • Cetinkaya HG, Tecimer H, Uslu H, Altındal Ş, 2013. Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 13 (6): 1150-1156.
  • Cheung SK, Cheung NW, 1986. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49: 85-87.
  • Cicek O, Tan SO, Tecimer H, Altındal Ş, 2018. Role of Graphene-Doped Organic/Polymer Nanocomposites on the Electronic Properties of Schottky Junction Structures for Photocell Applications. Journal of Electronic Materials, 47 (12): 7134-7142.
  • Çetinkaya S, Çetinkara HA, Kahraman S, Bayansal F, 2015. Characterization of Al/n-ZnO/p-Si/Al structure with low-cost solution-grown ZnO layer. Philosophical Magazine Letters, 93 (9): 550-559.
  • Ersöz G, Yücedağ İ, Azizian-Kalandaragh Y, Orak İ, Altındal Ş, 2016. Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Transactions on Electron Devices, 63 (7): 2948-2955.
  • Ersöz G, Yücedağ İ, Bayrakdar S, Altındal Ş, Gümüş A, 2017. Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 28 (9): 6413-6420.
  • Garrel DR, Gaudereau P, Zhang L, Reeves I, Brazeau P, 1991. Chronic administration of growth hormone-releasing factor increases wound strength and collagen maturation in granulation tissue. Journal of Surgical Research, 51 (4): 297-302.
  • Greco G, Di Franco S, Bongiorno C, Grzanka E, Leszczynski M, Giannazzo F, Roccaforte F, 2020. Thermal annealing effect on electrical and structural properties of Tungsten Carbide Schottky contacts on AlGaN/GaN heterostructures. Semiconductor Science and Technology, 35 (10): 105004.
  • Güneş S, Neugebauer H, Sariçiftçi NS, 2007. Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107 (4): 1324-1338.
  • Jiang, Y, Sung W, Baliga J, Wang S, Lee B, Huang A, 2018. Electrical Characteristics of 10-kV 4H-SiC MPS Rectifiers with High Schottky Barrier Height. Journal of Electronic Materials, 47 (2): 927-931.
  • Li H, Jiao W, Yanan O, Jianling Z, Jian Y, Guosheng W, Guangwen X, 2014. Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 449: 148-156.
  • Mikhelashvili V, Thangadurai P, Kaplan WD, Eisenstein G, 2010. The correlation of the electrical properties with electron irradiation and constant voltage stress for MIS devices based on high-k double layer (HfTiSiO:N and HfTiO:N) dielectrics. Microelectronic Engineering, 87 (9): 1728-1734.
  • Mirzanezhad-Asl R, Phirouznia A, Altındal Ş, Badali Y, Azizian-Kalandaragh Y, 2019. Fabrication, structural and electrical characterization of Au/(CuSe-polyvinyl alcohol)/n-Si (MPS) Schottky barrier structures. Physica B-Condensed Matter, 561: 1-8.
  • Norde H, 1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50: 5052.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva1 IV, Firsov AA, 2004. Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5696): 666-669.
  • Özdemir AF, Gök A, Türüt A, 2007. The electrical measurements in poly(2-chloroaniline) based thin film sandwich devices. Thin Solid Films, 515 (18): 7253- 7258.
  • Padma R, Balaram N, Reddy IN, Reddy VR, 2016. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure. Materials Chemistry and Physics, 177: 92-98.
  • Peppas NP, Merril EW, 1977. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. Journal of Biomedical Materials Research, 11 (3): 423-434.
  • Raj M, Joseph C, Subramanian M, Perumalsamy V, Elayappan V, 2020. Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn-WO3 films for ultraviolet photodetector application. New Journal of Chemistry, 44 (19): 7708-7718.
  • Ramadan R, Martin-Palma RJ, 2020. Electrical Characterization of MIS Schottky Barrier Diodes Based on Nanostructured Porous Silicon and Silver Nanoparticles with Applications in Solar Cells. Energies, 13 (9): 2165.
  • Reddy CVS, Han X, Zhu QY, Mai MLQ, Chen W, 2006. Dielectric spectroscopy studies on (PVP+PVA) polyblend film. Microelectronic Engineering, 83 (2): 281-285.
  • Reddy VR, Manjunath V, Janardhanam V, Kil YH, Choi CJ, 2014. Electrical Properties and Current Transport Mechanisms of the Au/n-GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer. Journal of Electronic Materials, 43: 3499-3507.
  • Rhoderick EH, Williams RH, 1988. Metal Semiconductor Contacts. Clarendon Press, Oxford-İngiltere.
  • Sharma BL, 1984. Metal-semiconductor Schottky barrier junctions and their application. Plenum Press, New York-Amerika Birleşik Devletleri.
  • Singh AK, Dwivedi ADD, Chakrabarti P, Prakash R, 2009. Electronic and optical properties of electrochemically polymerized polycarbazole/aluminum Schottky diodes. Journal of Applied Physics, 105 (11): 114506.
  • Sze SM, 1981. Physics of Semiconductor Devices. Wiley, New York-Amerika Birleşik Devletleri.
  • Taşçıoğlu I, Farooq WA, Turan R, Altındal Ş, Yakuphanoglu F, 2014. Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes. Journal of Alloys and Compounds, 590: 157-161.
  • Tung RT, 1992. Electron transport at metal-semiconductor interfaces: General theory. Physical Review B, 45: 13509.
  • Uslu H, Altındal Ş, Tunç T, Uslu İ, Mammadov TS, 2011. The illumination intensity and applied bias voltage on dielectric properties of au/polyvinyl alcohol (Co, Zn‐doped)/n‐Si Schottky barrier diodes. Journal of Applied Polymer Science, 120, 322-328.
  • Wöhrle D, Meissner D, 1991. Organic Solar Cells. Advanced Materials, 3 (3): 129-138.
  • Yücedağ İ, 2009. On the anomalous peak at low and moderate frequency C-V curves of Al/SiO2/p-Si structure at the forward bias region. Optoelectronics and Advanced Materials-Rapid Communications, 3 (6): 612-615.
  • Farag AAM, Yahia IS, 2011. Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synthetic Metals, 161 (1-2): 32-39.

Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi

Year 2021, Volume: 11 Issue: 1, 157 - 168, 01.03.2021
https://doi.org/10.21597/jist.799054

Abstract

Bu çalışmada, Metal-Yarıiletken (Au/p-Si) diyotlar, polimer arayüzey malzemesinin diyotların elektriksel özellikleri üzerine etkisini araştırmak ve geliştirmek için; saf polivinil alkol (PVA) arayüzeyli (Au/PVA/p-Si) ve %3 Grafen katkılı PVA arayüzeyli (Au/PVA:Gr/p-Si) olmak üzere üç farklı tip Schottky Bariyer diyot üretildi. Hazırlanan diyotların elektriksel özelliklerinin yanı sıra PVA ve PVA:Gr arayüzey malzemesinin etkisi araştırıldı. Her bir diyotun akım-gerilim karakteristiği oda sıcaklığında incelendi. Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer diyotların seri direnç (Rs), bariyer yüksekliği (ΦB0), arayüz durum yoğunluğu (Nss) ve idealite faktörü (n) gibi temel elektriksel parametreleri akım-gerilim verileri kullanılarak Termiyonik Emisyon (TE) teorisinden elde edildi. Termiyonik Emisyon teorisi ile elde edilen Rs ve ΦB0 parametrelerini karşılaştırmak amacıyla Norde metodu da kullanıldı. TE teorisi ile elde edilen n, Rs ve ΦB0 değerleri, Au/p-Si için sırasıyla 14.46, 275.33 , 0.66 eV, Au/PVA/p-Si için 4.98, 155.58  ve 0.72 eV olarak bulunurken, Au/PVA:Gr/p-Si için ise sırasıyla 5.61, 432.43  ve 0.77 eV olarak hesaplandı. Norde metodu ile elde edilen Rs ve ΦB0 değerleri ise, Au/p-Si için 362.39 ve 0.70 eV, Au/PVA/p-Si için 175.07  ve 0.75 eV olarak elde edilirken, Au/PVA:Gr/p-Si için 525.21 ve 0.76 eV (PVA:Gr) olarak bulundu. Norde ve Termiyonik Emisyon teorisi yöntemleriyle bulunan değerler birbiri ile uyumludur. Deneysel sonuçlar, PVA:Gr arayüzeyinin MPY yapıların elektriksel parametrelerinde iyileştirme sağladığını göstermiştir.

References

  • Altındal Ş, Tunç T, Tecimer H, Yücedağ İ, 2014. Electrical and photovoltaic properties of Au/(Ni, Zn)-doped PVA/n-Si structures in dark and under 250 W illumination level. Materials Science in Semiconductor Processing, 28: 48-53.
  • Ashery A, Shaban H, Gad SA, Mansour BA, 2020. Investigation of electrical and capacitance-voltage characteristics of GO/TiO2/n-Si MOS device. Materials Science in Semiconductor Processing. 114: 105070.
  • Baraz N, Yücedağ İ, Azizian-Kalandaragh Y, Altındal Ş, 2017. Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures. Journal of Materials Science: Materials in Electronics, 28 (2): 1315-1321.
  • Buzio R, Gerbi A, He QM, Qin Y, Mu WX, Jia ZT, Tao XT, Xu GW, Long SB, 2020. Benchmarking -Ga2O3 Schottky Diodes by Nanoscale Ballistic Electron Emission Microscopy. Advanced Electronic Materials, 6 (3): 1901151.
  • Card HC, Rhoderick EH, 1971. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4: 1589.
  • Cetinkaya HG, Tecimer H, Uslu H, Altındal Ş, 2013. Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Current Applied Physics, 13 (6): 1150-1156.
  • Cheung SK, Cheung NW, 1986. Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters, 49: 85-87.
  • Cicek O, Tan SO, Tecimer H, Altındal Ş, 2018. Role of Graphene-Doped Organic/Polymer Nanocomposites on the Electronic Properties of Schottky Junction Structures for Photocell Applications. Journal of Electronic Materials, 47 (12): 7134-7142.
  • Çetinkaya S, Çetinkara HA, Kahraman S, Bayansal F, 2015. Characterization of Al/n-ZnO/p-Si/Al structure with low-cost solution-grown ZnO layer. Philosophical Magazine Letters, 93 (9): 550-559.
  • Ersöz G, Yücedağ İ, Azizian-Kalandaragh Y, Orak İ, Altındal Ş, 2016. Investigation of electrical characteristics in Al/CdS-PVA/p-Si (MPS) structures using impedance spectroscopy method. IEEE Transactions on Electron Devices, 63 (7): 2948-2955.
  • Ersöz G, Yücedağ İ, Bayrakdar S, Altındal Ş, Gümüş A, 2017. Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes. Journal of Materials Science: Materials in Electronics, 28 (9): 6413-6420.
  • Garrel DR, Gaudereau P, Zhang L, Reeves I, Brazeau P, 1991. Chronic administration of growth hormone-releasing factor increases wound strength and collagen maturation in granulation tissue. Journal of Surgical Research, 51 (4): 297-302.
  • Greco G, Di Franco S, Bongiorno C, Grzanka E, Leszczynski M, Giannazzo F, Roccaforte F, 2020. Thermal annealing effect on electrical and structural properties of Tungsten Carbide Schottky contacts on AlGaN/GaN heterostructures. Semiconductor Science and Technology, 35 (10): 105004.
  • Güneş S, Neugebauer H, Sariçiftçi NS, 2007. Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews, 107 (4): 1324-1338.
  • Jiang, Y, Sung W, Baliga J, Wang S, Lee B, Huang A, 2018. Electrical Characteristics of 10-kV 4H-SiC MPS Rectifiers with High Schottky Barrier Height. Journal of Electronic Materials, 47 (2): 927-931.
  • Li H, Jiao W, Yanan O, Jianling Z, Jian Y, Guosheng W, Guangwen X, 2014. Effects of the graphene content and the treatment temperature on the supercapacitive properties of VOx/graphene nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 449: 148-156.
  • Mikhelashvili V, Thangadurai P, Kaplan WD, Eisenstein G, 2010. The correlation of the electrical properties with electron irradiation and constant voltage stress for MIS devices based on high-k double layer (HfTiSiO:N and HfTiO:N) dielectrics. Microelectronic Engineering, 87 (9): 1728-1734.
  • Mirzanezhad-Asl R, Phirouznia A, Altındal Ş, Badali Y, Azizian-Kalandaragh Y, 2019. Fabrication, structural and electrical characterization of Au/(CuSe-polyvinyl alcohol)/n-Si (MPS) Schottky barrier structures. Physica B-Condensed Matter, 561: 1-8.
  • Norde H, 1979. A modified forward I‐V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50: 5052.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva1 IV, Firsov AA, 2004. Electric Field Effect in Atomically Thin Carbon Films. Science, 306 (5696): 666-669.
  • Özdemir AF, Gök A, Türüt A, 2007. The electrical measurements in poly(2-chloroaniline) based thin film sandwich devices. Thin Solid Films, 515 (18): 7253- 7258.
  • Padma R, Balaram N, Reddy IN, Reddy VR, 2016. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure. Materials Chemistry and Physics, 177: 92-98.
  • Peppas NP, Merril EW, 1977. Development of semicrystalline poly(vinyl alcohol) hydrogels for biomedical applications. Journal of Biomedical Materials Research, 11 (3): 423-434.
  • Raj M, Joseph C, Subramanian M, Perumalsamy V, Elayappan V, 2020. Superior photoresponse MIS Schottky barrier diodes with nanoporous:Sn-WO3 films for ultraviolet photodetector application. New Journal of Chemistry, 44 (19): 7708-7718.
  • Ramadan R, Martin-Palma RJ, 2020. Electrical Characterization of MIS Schottky Barrier Diodes Based on Nanostructured Porous Silicon and Silver Nanoparticles with Applications in Solar Cells. Energies, 13 (9): 2165.
  • Reddy CVS, Han X, Zhu QY, Mai MLQ, Chen W, 2006. Dielectric spectroscopy studies on (PVP+PVA) polyblend film. Microelectronic Engineering, 83 (2): 281-285.
  • Reddy VR, Manjunath V, Janardhanam V, Kil YH, Choi CJ, 2014. Electrical Properties and Current Transport Mechanisms of the Au/n-GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer. Journal of Electronic Materials, 43: 3499-3507.
  • Rhoderick EH, Williams RH, 1988. Metal Semiconductor Contacts. Clarendon Press, Oxford-İngiltere.
  • Sharma BL, 1984. Metal-semiconductor Schottky barrier junctions and their application. Plenum Press, New York-Amerika Birleşik Devletleri.
  • Singh AK, Dwivedi ADD, Chakrabarti P, Prakash R, 2009. Electronic and optical properties of electrochemically polymerized polycarbazole/aluminum Schottky diodes. Journal of Applied Physics, 105 (11): 114506.
  • Sze SM, 1981. Physics of Semiconductor Devices. Wiley, New York-Amerika Birleşik Devletleri.
  • Taşçıoğlu I, Farooq WA, Turan R, Altındal Ş, Yakuphanoglu F, 2014. Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes. Journal of Alloys and Compounds, 590: 157-161.
  • Tung RT, 1992. Electron transport at metal-semiconductor interfaces: General theory. Physical Review B, 45: 13509.
  • Uslu H, Altındal Ş, Tunç T, Uslu İ, Mammadov TS, 2011. The illumination intensity and applied bias voltage on dielectric properties of au/polyvinyl alcohol (Co, Zn‐doped)/n‐Si Schottky barrier diodes. Journal of Applied Polymer Science, 120, 322-328.
  • Wöhrle D, Meissner D, 1991. Organic Solar Cells. Advanced Materials, 3 (3): 129-138.
  • Yücedağ İ, 2009. On the anomalous peak at low and moderate frequency C-V curves of Al/SiO2/p-Si structure at the forward bias region. Optoelectronics and Advanced Materials-Rapid Communications, 3 (6): 612-615.
  • Farag AAM, Yahia IS, 2011. Rectification and barrier height inhomogeneous in Rhodamine B based organic Schottky diode. Synthetic Metals, 161 (1-2): 32-39.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics, Engineering, Electrical Engineering
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Gülçin Ersöz Demir 0000-0003-2636-3291

Publication Date March 1, 2021
Submission Date September 23, 2020
Acceptance Date November 24, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Ersöz Demir, G. (2021). Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology, 11(1), 157-168. https://doi.org/10.21597/jist.799054
AMA Ersöz Demir G. Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. March 2021;11(1):157-168. doi:10.21597/jist.799054
Chicago Ersöz Demir, Gülçin. “Au/p-Si, Au/PVA/p-Si Ve Au/PVA:Gr/P-Si Schottky Bariyer Diyotların Üretimi Ve Temel Elektriksel Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11, no. 1 (March 2021): 157-68. https://doi.org/10.21597/jist.799054.
EndNote Ersöz Demir G (March 1, 2021) Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi. Journal of the Institute of Science and Technology 11 1 157–168.
IEEE G. Ersöz Demir, “Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 11, no. 1, pp. 157–168, 2021, doi: 10.21597/jist.799054.
ISNAD Ersöz Demir, Gülçin. “Au/p-Si, Au/PVA/p-Si Ve Au/PVA:Gr/P-Si Schottky Bariyer Diyotların Üretimi Ve Temel Elektriksel Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology 11/1 (March 2021), 157-168. https://doi.org/10.21597/jist.799054.
JAMA Ersöz Demir G. Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11:157–168.
MLA Ersöz Demir, Gülçin. “Au/p-Si, Au/PVA/p-Si Ve Au/PVA:Gr/P-Si Schottky Bariyer Diyotların Üretimi Ve Temel Elektriksel Özelliklerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 11, no. 1, 2021, pp. 157-68, doi:10.21597/jist.799054.
Vancouver Ersöz Demir G. Au/p-Si, Au/PVA/p-Si ve Au/PVA:Gr/p-Si Schottky Bariyer Diyotların Üretimi ve Temel Elektriksel Özelliklerinin İncelenmesi. J. Inst. Sci. and Tech. 2021;11(1):157-68.