Research Article
BibTex RIS Cite

Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries

Year 2021, Volume: 11 Issue: 2, 1444 - 1454, 01.06.2021
https://doi.org/10.21597/jist.772977

Abstract

The aim of this study was to investigate the effects of process parameters on tensile strength for PLA specimens produced by fused deposition modeling (FDM). For this purpose, two different density rates (20% and 100%), printing speeds (100 and 130 mm/s), and nozzle temperatures (180 and 220oC) with three different hatching patterns including elliptical and diagonal (Gyroid, Cross 3D ve Grid) were selected. In the study, higher tensile stress was obtained at a rate of 100%, compared to a 20% density rate. When the samples with a 20% density rate are compared among themselves, the highest tensile stress value obtained was measured as 38.76 MPa for the Grid-patterned specimen produced at a nozzle temperature of 2200C and printing speed of 100 mm/s. Statistical analysis was also done for specimens with a 20% density rate. As a result of the variance analysis (ANOVA) method, the confidence level was achieved as 96%. When comparing in terms of specific strength, it was determined that the closest pattern to the full-filled sample with a specific strength of 5,893 MPa/gr was Cross 3D-patterned sample with a value of 5.458 MPa/gr.

References

  • About Additive Manufacturing – Material Extrusion, Loughborough University, [Online], Link: http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialextrusion/ erişim tarihi: 05 Mart 2020.
  • Alafaghani A,Qattawi A,Alrawia B,Guzmana A,2017. ScienceDirect Experimental Optimization of Fused Deposition Modelling Processing Parameters: a Design-for-Manufacturing Approach. Procedia Manufacturing 10, 791 – 803. 10. 10.1016/j.promfg.2017.07.079.
  • Attoye S,Malekipour E, El-Mounayri H,2019. Correlation Between Process Parameters and Mechanical Properties in Parts Printed by the Fused Deposition Modeling Process: Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics. 10.1007/978-3-319-95083-9_8.
  • Chac´on J.M, Caminero M.A., Garc´ıa-Plaza E., N´u˜nez P.J. Additive manufacturing of PLA structures using fused deposition modelling.: effect of process parameters on mechanical properties and their optimal selection.Materials and Design. 10.1016/j.matdes.2017.03.065.
  • Chen H,Yang X,Chen L,Wang Y,Sun Y,2016. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays. Scientific Reports. 6. 19207. 10.1038/srep19207.
  • Chadha A, Haq MI U1, Raina A, Singh R.R, Penumarti N.B,Bishnoi M.S, 2019. Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World Journal of Engineering. 16/4,550-559. 10.1108/WJE-09-2018-0329.
  • Dey A,Yodo N,2019. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. Journal of Manufacturing and Materials Processing. 3. 64. 10.3390/jmmp3030064.
  • Dizon JR, Espera A,Chen Q, Advincula R,(2017. Mechanical Characterization of 3D-Printed Polymers. Additive Manufacturing. 20. 10.1016/j.addma.2017.12.002.
  • DMG MORI, DMG MORI Dergi, https://tr.dmgmori.com/haberler-ve-medya/dergi, sayı:1, 2019, erişim tarihi: 05 Temmuz 2020.
  • Durga P, Vanapalli R, Geethika, V,2019. Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA. Materials Today: Proceedings. 18. 10.1016/j.matpr.2019.06.009.
  • Gibson I, Rosen D, Stucker B, 2015. Additive Manufacturing Technologies, Springer e-Book. 10.1007/978-1-4939-2113-3,
  • Lanzotti A G, Staiano M, Massimo, M G, 201). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21, 604-617. 10.1108/RPJ-09-2014-0135.
  • Leite M, João F, Augusto D, Reis L, Vaz, M F, 2018. Study Of The Influence Of 3d Prıntıng Parameters On The Mechanıcal Propertıes Of PLA. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 547-552. 10.25341/D4988C
  • Mohamed O A, Masood S H, Bhowmik J L,2015. Optimization of fused depositionmodeling process parameters: a review of current research and future prospects, J. Adv. Manuf. 3,42–53.
  • Rajpurohit S.Dave H,2019. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology. 101. 10.1007/s00170-018-3047-x.
  • Samykano M, Selvamani S K, Kadirgama K, Ngui W K, Kanagaraj G, Sudhakar K, 2019. Mechanical property of FDM printed ABS: influence of printing parameters. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-019-03313-0)
  • Sheoran A, Kumar H, 2019. Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings. doi: 10.1016/j.matpr.2019.11.296.
  • Wenzelburger M,Silber M, Gadow D, 2010. Manufacturing of Light Metal Matrix Composites by Combined Thermal Spray and Semisolid Forming Process – Summary of the Current State of Technology. Key Engineering Materials - KEY ENG MAT. 425, 217-244. 10.4028/www.scientific.net/KEM.425.217.
  • Williams L,2016. Additive Manufacturing or 3D Scanning and Printing, Manufacturing Engineering Handbook, 2nd ed., McGraw-Hill Education.
  • Zaman U K, Boesch E, Siada, A, Rivette M, Baqai A, 2019. Impact of Fused Deposition Modeling (FDM) Process Parameters on strength of built parts using Taguchi’s Design of Experiments. International Journal of Advanced Manufacturing Technology. 10.1007/s00170-018-3014-6.

FDM Üç Boyutlu Yazıcı Teknolojisinde Farklı İçyapı Geometrileri İle Üretilmiş Numunelerin Çekme Dayanımlarının Karşılaştırılması

Year 2021, Volume: 11 Issue: 2, 1444 - 1454, 01.06.2021
https://doi.org/10.21597/jist.772977

Abstract

Çalışmada eriyik yığma modelleme (FDM) yöntemi ile 3B yazıcı kullanarak üretilen PLA numunelerin mekanik özelliklerden olan çekme dayanımına işlem parametrelerinin etkisinin belirlenmesi amaçlanmıştır. Bu amaçla çalışmada işlem parametreleri olarak 2 farklı doluluk oranı (%20 ve %100), 2 farklı baskı hızı (100,130mm/sn), 2 farklı nozul sıcaklığı (180 ve 220°C) ve oval ve köşegen desen yapılarını içeren3 farklı desen çeşidi (Gyroid,Cross 3D ve Grid) seçilmiştir. Çalışmada, %20 doluluk oranına göre, %100 doluluk oranında daha yüksek çekme gerilmesi elde edilmiştir. %20 doluluk oranındaki numuneler kendi aralarında kıyaslandığında elde edilen en yüksek çekme gerilmesi değeri 2200C nozul sıcaklığında, 100 mm/s baskı hızında üretilen Grid desen çeşidinde 38.76 MPa olarak ölçülmüştür. Çalışmada %20 doluluk oranındaki numuneler için istatistik analiz yapılmıştır. Varyans analiz (ANOVA) yöntemi sonucu güven düzeyi %96 elde edilmiştir. Özgül dayanım açısından kıyaslama yapıldığında ise 5,893 MPa/gr özgül dayanıma sahip tam dolu parçaya en yakın desenin 5.458 MPa/gr değeri ile Cross 3D deseni olduğu belirlenmiştir.

References

  • About Additive Manufacturing – Material Extrusion, Loughborough University, [Online], Link: http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialextrusion/ erişim tarihi: 05 Mart 2020.
  • Alafaghani A,Qattawi A,Alrawia B,Guzmana A,2017. ScienceDirect Experimental Optimization of Fused Deposition Modelling Processing Parameters: a Design-for-Manufacturing Approach. Procedia Manufacturing 10, 791 – 803. 10. 10.1016/j.promfg.2017.07.079.
  • Attoye S,Malekipour E, El-Mounayri H,2019. Correlation Between Process Parameters and Mechanical Properties in Parts Printed by the Fused Deposition Modeling Process: Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics. 10.1007/978-3-319-95083-9_8.
  • Chac´on J.M, Caminero M.A., Garc´ıa-Plaza E., N´u˜nez P.J. Additive manufacturing of PLA structures using fused deposition modelling.: effect of process parameters on mechanical properties and their optimal selection.Materials and Design. 10.1016/j.matdes.2017.03.065.
  • Chen H,Yang X,Chen L,Wang Y,Sun Y,2016. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays. Scientific Reports. 6. 19207. 10.1038/srep19207.
  • Chadha A, Haq MI U1, Raina A, Singh R.R, Penumarti N.B,Bishnoi M.S, 2019. Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts. World Journal of Engineering. 16/4,550-559. 10.1108/WJE-09-2018-0329.
  • Dey A,Yodo N,2019. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. Journal of Manufacturing and Materials Processing. 3. 64. 10.3390/jmmp3030064.
  • Dizon JR, Espera A,Chen Q, Advincula R,(2017. Mechanical Characterization of 3D-Printed Polymers. Additive Manufacturing. 20. 10.1016/j.addma.2017.12.002.
  • DMG MORI, DMG MORI Dergi, https://tr.dmgmori.com/haberler-ve-medya/dergi, sayı:1, 2019, erişim tarihi: 05 Temmuz 2020.
  • Durga P, Vanapalli R, Geethika, V,2019. Effect of fused deposition modelling (FDM) process parameters on tensile strength of carbon fibre PLA. Materials Today: Proceedings. 18. 10.1016/j.matpr.2019.06.009.
  • Gibson I, Rosen D, Stucker B, 2015. Additive Manufacturing Technologies, Springer e-Book. 10.1007/978-1-4939-2113-3,
  • Lanzotti A G, Staiano M, Massimo, M G, 201). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21, 604-617. 10.1108/RPJ-09-2014-0135.
  • Leite M, João F, Augusto D, Reis L, Vaz, M F, 2018. Study Of The Influence Of 3d Prıntıng Parameters On The Mechanıcal Propertıes Of PLA. Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), 547-552. 10.25341/D4988C
  • Mohamed O A, Masood S H, Bhowmik J L,2015. Optimization of fused depositionmodeling process parameters: a review of current research and future prospects, J. Adv. Manuf. 3,42–53.
  • Rajpurohit S.Dave H,2019. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. The International Journal of Advanced Manufacturing Technology. 101. 10.1007/s00170-018-3047-x.
  • Samykano M, Selvamani S K, Kadirgama K, Ngui W K, Kanagaraj G, Sudhakar K, 2019. Mechanical property of FDM printed ABS: influence of printing parameters. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-019-03313-0)
  • Sheoran A, Kumar H, 2019. Fused Deposition modeling process parameters optimization and effect on mechanical properties and part quality: Review and reflection on present research. Materials Today: Proceedings. doi: 10.1016/j.matpr.2019.11.296.
  • Wenzelburger M,Silber M, Gadow D, 2010. Manufacturing of Light Metal Matrix Composites by Combined Thermal Spray and Semisolid Forming Process – Summary of the Current State of Technology. Key Engineering Materials - KEY ENG MAT. 425, 217-244. 10.4028/www.scientific.net/KEM.425.217.
  • Williams L,2016. Additive Manufacturing or 3D Scanning and Printing, Manufacturing Engineering Handbook, 2nd ed., McGraw-Hill Education.
  • Zaman U K, Boesch E, Siada, A, Rivette M, Baqai A, 2019. Impact of Fused Deposition Modeling (FDM) Process Parameters on strength of built parts using Taguchi’s Design of Experiments. International Journal of Advanced Manufacturing Technology. 10.1007/s00170-018-3014-6.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Selim Bacak 0000-0002-9640-2893

Hatice Varol Özkavak 0000-0002-0314-0119

Mehmet Mahir Sofu 0000-0002-0010-0832

Publication Date June 1, 2021
Submission Date July 24, 2020
Acceptance Date December 16, 2020
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Bacak, S., Varol Özkavak, H., & Sofu, M. M. (2021). Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology, 11(2), 1444-1454. https://doi.org/10.21597/jist.772977
AMA Bacak S, Varol Özkavak H, Sofu MM. Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. J. Inst. Sci. and Tech. June 2021;11(2):1444-1454. doi:10.21597/jist.772977
Chicago Bacak, Selim, Hatice Varol Özkavak, and Mehmet Mahir Sofu. “Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM With Various Inner Geometries”. Journal of the Institute of Science and Technology 11, no. 2 (June 2021): 1444-54. https://doi.org/10.21597/jist.772977.
EndNote Bacak S, Varol Özkavak H, Sofu MM (June 1, 2021) Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. Journal of the Institute of Science and Technology 11 2 1444–1454.
IEEE S. Bacak, H. Varol Özkavak, and M. M. Sofu, “Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries”, J. Inst. Sci. and Tech., vol. 11, no. 2, pp. 1444–1454, 2021, doi: 10.21597/jist.772977.
ISNAD Bacak, Selim et al. “Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM With Various Inner Geometries”. Journal of the Institute of Science and Technology 11/2 (June 2021), 1444-1454. https://doi.org/10.21597/jist.772977.
JAMA Bacak S, Varol Özkavak H, Sofu MM. Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. J. Inst. Sci. and Tech. 2021;11:1444–1454.
MLA Bacak, Selim et al. “Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM With Various Inner Geometries”. Journal of the Institute of Science and Technology, vol. 11, no. 2, 2021, pp. 1444-5, doi:10.21597/jist.772977.
Vancouver Bacak S, Varol Özkavak H, Sofu MM. Comparison of Mechanical Properties of 3D-Printed Specimens Manufactured Via FDM with Various Inner Geometries. J. Inst. Sci. and Tech. 2021;11(2):1444-5.