Year 2021, Volume 11 , Issue 2, Pages 1293 - 1301 2021-06-01

Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds
Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds

Murat SÜNKÜR [1] , Züleyha TİĞİZ [2] , Deniz CEBE [3] , Tarık ARAL [4]


Two novel C2-symmetrical chiral tetraamide compounds derived from (S)-isoleucine were synthesised and their enantiomeric recognition abilities towards enantiomers of some amino acid esters and 1-arylethylamins were examined by UV-titration method. These receptor compounds exhibited strong complexation (with Ka up to 5787.23 M-1) and very good enantioselectivity (up to KaS/KaR= 13.98).
Two novel C2-symmetrical chiral tetraamide compounds derived from (S)-isoleucine were synthesised and their enantiomeric recognition abilities towards enantiomers of some amino acid esters and 1-arylethylamins were examined by UV-titration method. These receptor compounds exhibited strong complexation (with Ka up to 5787.23 M-1) and very good enantioselectivity (up to KaS/KaR= 13.98).
  • Aral H, Aral T, Çolak M, Ziyadanoğulları B, Ziyadanoğulları R,2013. C2-Symmetric chiral diamine ligands for enantiomeric recognition of amino acid esters and mandelic acid by proton NMR titration method. Turkish Journal of Chemistry, 37:374-382. doi: 10.3906/kim-1207-58
  • Aral H, Çelik KS, Altındağ R, Aral T, 2017. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography. Talanta, 174:703-714. doi: 10.1016/j.talanta.2017.07.014
  • Aydın I, Aral T, Karakaplan M, Hoşgören H, 2009. Chiral lariat ethers as membrane carriers for chiral amino acids and their sodium and potassium salts. Tetrahedron: Asymmetry, 20(2):179-183. doi: 0.1016/j.tetasy.2009.01.005
  • Bako P, Keglevich G, Rapi Z, Toke L, 2012. The enantiomeric differentiation ability of chiral crown ethers based on carbohydrates. Current Organic Chemistry, 16:297-304. doi: 10.2174/138527212799499877
  • Ballistreri FP, Pappalardo A, Tomaselli GA, Toscano RM, Sfrazzetro GT, 2010. Heteroditopic chiral uranyl–salen receptor for molecular recognition of amino acid ammonium salts. European Journal of Organic Chemistry, 3806-3810. doi: 10.1002/ejoc.201000566
  • Bennesi HA, Hildebrand JH, 1949. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71(8):2703-2707. doi: 10.1021/ja01176a030
  • Bohanon TM, Caruso PL, Denzinger S, Fink R, Mobius D, et al., 1999. Molecular recognition-induced function and competitive replacement by hydrogen-bonding interactions: Amphiphilic barbituric acid derivatives, 2,4,6-triaminopyrimidine, and related structures at the air−water interface. Langmuir, 15(1):174-184. doi: 10.1021/la980348w
  • Chadwick DJ, Cliffe IA, Sutherland IO, Newton RF, 1984. The formation of complexes between aza derivatives of crown ethers and primary alkylammonium salts. Part 7. Chiral derivatives of aza crown ethers. Journal of the Chemical Society, Perkin Transactions 1, 1707-1717. doi: 10.1039/P19840001707
  • Demirtas HN, Bozkurt S, Durmaz M, Yilmaz M, Sirit A, 2009. Chiral calix[4]azacrowns for enantiomeric recognition of amino acid derivatives. Tetrahedron, 65(15):3014-3018. doi: 10.1016/j.tet.2009.01.087
  • Deniz P, Turgut Y, Toğrul M, Hoşgören H, 2011. Pyridine containing chiral macrocycles: synthesis and their enantiomeric recognition for amino acid derivatives. Tetrahedron, 67(34):6227-6232. doi: 10.1016/j.tet.2011.06.064
  • Diederich F, 1988. Complexation of neutral molecules by cyclophane hosts. Angewandte Chemie International Edition in English, 27(3):362-386. doi: 10.1002/anie.198803621
  • Fitzmaurice RJ, Kyne GM, Douheret D, Kilburn JD, 2002. Synthetic receptors for carboxylic acids and carboxylates. Journal of the Chemical Society, Perkin Transactions 1, 7:841-864. doi: 10.1039/B009041G
  • Forte G, D’Urso A, Ballistreri FP, Tuscano RM, Tomaselli GA, et al., 2015. Enantiomeric recognition of α-amino acid derivatives by chiral uranyl–salen receptors. Tetrahedron Letters, 56(22):2922-2926. doi: 10.1016/j.tetlet.2015.04.092
  • Guo S, Wang G, Ai L, 2013. Synthesis of macrocycles and their application as chiral solvating agents in the enantiomeric recognition of carboxylic acids and α-amino acid derivatives. Tetrahedron: Asymmetry, 24(8):480-491. doi: 10.1016/j.tetasy.2013.03.005
  • Hembury GA, Borovkov VV, Inoue Y, 2008. Chirality-sensing supramolecular systems. Chemical Reviews, 108(1):1-73. doi: 10.1021/cr050005k
  • Horvath G, Hutszthy P, Szarvas S, Szokan G, Redd JT, et al., 2000. Preparation of a new chiral pyridino-crown ether-based stationary phase for enantioseparation of racemic primary organic ammonium salts. Industrial & Engineering Chemistry Research, 39(10):3576–3581. doi: 10.1021/ie000272a
  • Howard JA, Nonn M, Fulop F, Wenzel TJ, 2013. Enantiomeric discrimination of isoxazoline fused β-amino acid derivatives using (18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral NMR solvating agent. Chirality, 25(1):48-53. doi: 10.1002/chir.22114
  • Izatt RM, Wang T, Hathaway JK, Zhang XX, Curtis JC, et al., 1994. Factors influencing enantiomeric recognition of primary alkylammonium salts by pyridino-18-crown-6 type ligands. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 17(2):157-175. doi: 10.1007/BF00711856
  • Karakaplan M, Aral T, 2005. Synthesis of new chiral crown ethers containing a (p-methoxyphenoxy)methyl moiety and their chiral recognition ability towards amino acid esters. Tetrahedron: Asymmetry, 16(12):2119-2124. doi: 10.1016/j.tetasy.2005.05.019
  • Kizirian JC, Caille JC, Alexakis A, 2003. Conceptually new chiral tertiary C2 symmetric diamines in asymmetric synthesis. Tetrahedron Letters, 44(49):8893-8895. doi: 10.1016/j.tetlet.2003.09.171
  • Kormos A, Moczar I, Baranyai P, Kupai J, Toth K, et al., 2013. Synthesis and enantiomeric recognition studies of a novel 5,5-dioxophenothiazine-1,9 bis(thiourea) containing glucopyranosyl groups. Tetrahedron: Asymmetry 24(1):62-65. doi: 10.1016/j.tetasy.2012.11.020
  • Köylü MZ, Aral T, Karakaplan M, Kocakaya ŞÖ, Hoşgören H, 2011. Enantioselective complexation of chiral lariat crown ethers and chiral primary alkylammonium perchlorates. Turkish Journal of Chemistry, 35(2):171-179. doi: 10.3906/kim-1008-844
  • Lee T, Lee W, Hyun MH, Park JH, 2010. Enantioseparation of α-amino acids on an 18-crown-6-tetracarboxylic acid-bonded silica by capillary electrochromatography. Journal of Chromatography A, 1217(8):1425-1428. doi: 10.1016/j.chroma.2009.12.064
  • Liu TJ, Chen YY, Zhang KS, Wang D, Guo DW, et al., 2001. Enantiomeric recognition of chiral 3,3-bridged-1,1′-binaphthol dimer toward α-phenylethylamine and α-amino acid ester. Chirality, 13:595-600. doi: 10.1002/chir.1183
  • Liu L, He C, Yang L, Huang Y, Wu Q, et al., 2014. Novel C1-symmetric chiral crown ethers bearing rosin acids groups: synthesis and enantiomeric recognition for ammonium salts. Tetrahedron, 70(50):9545-9553. doi: 10.1016/j.tet.2014.10.050
  • Lu JT, Wu LZ, Jiang JZ, Zhang XM, 2010. Helical nanostructures of an optically active metal-free porphyrin with four optically active binaphthyl moieties: Effect of metal–ligand coordination on the morphology. European Journal of Inorganic Chemistry, 25:4000-4008. doi: 10.1002/ejic.201000358
  • Marchi-Artzner V, Artzner F, Karthaus O, Shimomura M, Ariga K, et al., 1998. Molecular recognition between 2,4,6-triaminopyrimidine lipid monolayers and complementary barbituric molecules at the air/water interface: effects of hydrophilic spacer, ionic strength, and pH. Langmuir, 14(18):5164-5171. doi: 10.1021/la971192n
  • Nakashima K, Iguchi R, Shinkai S, 2000. Diaza-18-crown-6-based saccharide receptor bearing two boronic acids. Possible communication between bound saccharides and metal cations. Industrial & Engineering Chemistry Research, 39(10):3479-3483. doi: 10.1021/ie000225i
  • Paik MJ, Kang JS, Huang BY, Carey JR, Lee W, 2013. Development and application of chiral crown ethers as selectors for chiral separation in high-performance liquid chromatography and nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 1274:1-5. doi: 10.1016/j.chroma.2012.11.086
  • Pal D, Moczar I, Kormos A, Baranyai P, Ovari L, et al., 2015. Synthesis and enantiomeric recognition studies of optically active acridone bis(urea) and bis(thiourea) derivatives. Tetrahedron: Asymmetry, 26 (23):1335-1340. doi: 10.1016/j.tetasy.2015.10.004
  • Pal D, Moczar I, Kormos A, Baranyai P, Huszthy P, 2016. Synthesis and enantiomeric recognition studies of optically active 5,5-dioxophenothiazine bis(urea) and bis(thiourea) derivatives. Tetrahedron: Asymmetry, 27(19):918-922. doi: 10.1016/j.tetasy.2016.08.002
  • Park JY, Jin KB, Hyun MH, 2012. Liquid chromatographic resolution of 3-amino-1,4-benzodiazepin-2-ones on crown ether-based chiral stationary phases. Chirality, 24:427-431. doi: 10.1002/chir.22041
  • Peri F, Maggi R, Palla G, Bigi F, Corradini R, et al., 1998. Discrimination properties of tetraamidic branched selectors. Journal of Chromatography A, 802(2):315-324. doi: 10.1016/S0021-9673(97)01190-4
  • Pu L, 2004. Fluorescence of organic molecules in chiral recognition. Chemical Reviews, 104(3):1687-1716. doi: 10.1021/cr030052h
  • Qing G, Sun T, Chen Z, Yang X, Wu X, et al., 2009. ‘Naked-eye’ enantioselective chemosensors for N-protected amino acid anions bearing thiourea units. Chirality, 21(3):363-373. doi: 10.1002/chir.20593
  • Sipos L, Ilisz I, Aranyi A, Gecse Z, Nonn M, et al., 2012. High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phases. Chirality, 24(10):817-824. doi: 10.1002/chir.22077
  • Su X, Luo K, Xiang Q, Lan J, Xie R, 2009. Enantioselective recognitions of chiral molecular tweezers containing imidazoliums for amino acids. Chirality, 21(5):539-546. doi: 10.1002/chir.20635
  • Şeker S, Barış D, Arslan N, Turgut Y, Pirinççioğlu N, et al., 2014. Synthesis of rigid and C2-symmetric pyridino-15-crown-5 type macrocycles bearing diamide–diester functions: Enantiomeric recognition for chiral primary organoammonium perchlorate salts. Tetrahedron: Asymmetry 25(5):411-417. doi: 10.1016/j.tetasy.2014.01.009
  • Tang Z, Cun LF, Cui X, Mi AQ, Jiang JZ, et al., 2006. Design of highly enantioselective organocatalysts based on molecular recognition. Organic Letters, 8(7):1263-1266. doi: 10.1021/ol0529391
  • Tsioupi DA, Stefan-van Staden RI, Kapnissi-Christodoulou CP, 2013. Chiral selectors in CE: Recent developments and applications. Electrophoresis, 34:178-204. doi: 10.1002/elps.201200239
  • Turgut Y, Aral T, Hoşgören H, 2009. Synthesis of novel C2-symmetric chiral crown ethers and investigation of their enantiomeric recognition properties. Tetrahedron: Asymmetry, 20(19):2293-2298. doi: 10.1016/j.tetasy.2009.09.010
  • Ulatowski F, Jurczak J, 2014. Enantiomeric recognition of carboxylic anions by a library of neutral receptors derived from α-amino acids and o-phenylenediamine. Tetrahedron: Asymmetry, 25(13):962-968. doi: 10.1016/j.tetasy.2014.06.004
  • Wang Z, Wei S, Wang C, Sun J, . Enantioselective hydrosilylation of ketimines catalyzed by Lewis basic C2-symmetric chiral tetraamide. Tetrahedron: Asymmetry, 18(6):705-709. doi: 10.1016/j.tetasy.2007.03.008
  • Yi YR, Kim KS, Helal A, Kim HS, 2013. Molecular recognition of ω-amino acids by thiazolobenzocrown receptors: a GABA-selective ionophore. Supramolecular Chemistry, 25:16-23. doi: 10.1080/10610278.2012.726731
  • Zhang X, Yin J, Yoon J, 2014. Recent advances in development of chiral fluorescent and colorimetric sensors. Chemical Reviews, 114:4918–4959. doi: 10.1021/cr400568b
Primary Language en
Subjects Engineering, Chemical
Published Date Haziran-2021
Journal Section Kimya / Chemistry, Kimya Mühendisliği / Chemical Engineering
Authors

Orcid: 0000-0002-8513-7860
Author: Murat SÜNKÜR (Primary Author)
Institution: Batman Üniversitesi Fen Edebiyat Fakültesi
Country: Turkey


Orcid: 0000-0002-5884-392X
Author: Züleyha TİĞİZ
Institution: BATMAN ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ
Country: Turkey


Orcid: 0000-0001-5860-2133
Author: Deniz CEBE
Institution: BATMAN ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-6612-2751
Author: Tarık ARAL
Institution: BATMAN ÜNİVERSİTESİ
Country: Turkey


Supporting Institution Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Project Number BTUBAP-2018-FED-2
Dates

Application Date : September 30, 2020
Acceptance Date : December 31, 2020
Publication Date : June 1, 2021

Bibtex @research article { jist802116, journal = {Journal of the Institute of Science and Technology}, issn = {2146-0574}, eissn = {2536-4618}, address = {}, publisher = {Igdir University}, year = {2021}, volume = {11}, pages = {1293 - 1301}, doi = {10.21597/jist.802116}, title = {Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds}, key = {cite}, author = {Sünkür, Murat and Tiğiz, Züleyha and Cebe, Deniz and Aral, Tarık} }
APA Sünkür, M , Tiğiz, Z , Cebe, D , Aral, T . (2021). Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds . Journal of the Institute of Science and Technology , 11 (2) , 1293-1301 . DOI: 10.21597/jist.802116
MLA Sünkür, M , Tiğiz, Z , Cebe, D , Aral, T . "Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds" . Journal of the Institute of Science and Technology 11 (2021 ): 1293-1301 <https://dergipark.org.tr/en/pub/jist/issue/61423/802116>
Chicago Sünkür, M , Tiğiz, Z , Cebe, D , Aral, T . "Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds". Journal of the Institute of Science and Technology 11 (2021 ): 1293-1301
RIS TY - JOUR T1 - Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds AU - Murat Sünkür , Züleyha Tiğiz , Deniz Cebe , Tarık Aral Y1 - 2021 PY - 2021 N1 - doi: 10.21597/jist.802116 DO - 10.21597/jist.802116 T2 - Journal of the Institute of Science and Technology JF - Journal JO - JOR SP - 1293 EP - 1301 VL - 11 IS - 2 SN - 2146-0574-2536-4618 M3 - doi: 10.21597/jist.802116 UR - https://doi.org/10.21597/jist.802116 Y2 - 2020 ER -
EndNote %0 Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds %A Murat Sünkür , Züleyha Tiğiz , Deniz Cebe , Tarık Aral %T Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds %D 2021 %J Journal of the Institute of Science and Technology %P 2146-0574-2536-4618 %V 11 %N 2 %R doi: 10.21597/jist.802116 %U 10.21597/jist.802116
ISNAD Sünkür, Murat , Tiğiz, Züleyha , Cebe, Deniz , Aral, Tarık . "Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds". Journal of the Institute of Science and Technology 11 / 2 (June 2021): 1293-1301 . https://doi.org/10.21597/jist.802116
AMA Sünkür M , Tiğiz Z , Cebe D , Aral T . Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds. Iğdır Üniv. Fen Bil Enst. Der.. 2021; 11(2): 1293-1301.
Vancouver Sünkür M , Tiğiz Z , Cebe D , Aral T . Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds. Journal of the Institute of Science and Technology. 2021; 11(2): 1293-1301.
IEEE M. Sünkür , Z. Tiğiz , D. Cebe and T. Aral , "Synthesis and Enantiomeric Recognition Studies of Novel C2-Symmetrical Chiral Tetra-Amide Compounds", Journal of the Institute of Science and Technology, vol. 11, no. 2, pp. 1293-1301, Jun. 2021, doi:10.21597/jist.802116