Research Article
BibTex RIS Cite

Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3

Year 2021, Volume: 11 Issue: 4, 2737 - 2745, 15.12.2021
https://doi.org/10.21597/jist.952882

Abstract

Ni doped BiFeO3 powders were synthesized by sol-gel method. The effect of annealing temperature and solvent type on the structural and magnetic properties of the synthesized powders has been studied by XRD, SEM, EDX, VSM and FMR techniques at the room temperature. XRD results highlighted that the Ni doped BiFeO3 powders were successfully synthesized. The morphology changes with annealing temperature and solvent material. With EDX analysis, all the elements in Ni doped BiFeO3 powders were confirmed. The magnetic properties of the samples were observed to strongly depend on annealing temperature and solvent material. The saturation magnetization is observed to increase with an increasing annealing temperature. The broad resonance lines indicate ferromagnetic property.

Supporting Institution

Iğdır University Department of Scientific Research Projects

Project Number

2017-FBE-A24

Thanks

This work was supported by Iğdır University Department of Scientific Research Projects (BAP) under project number 2017-FBE-A24.

References

  • Ahmed NM, Sabah FA, Abdulgafour HI, Alsadig A, Sulieman A, Alkhoaryef M, 2019. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13: 102159.
  • Bibes M, Barthelemy A, 2007. Oxide spintronics, IEEE transactions on electron devices, 54: 1003-23.
  • Catalan G, Scott JF, 2009. Physics and applications of bismuth ferrite. Advanced Materials, 21: 2463-85.
  • Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW, 2009. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324: 63-66.
  • Clarke G, Rogov A, McCarthy S, Bonacina L, Gunko Y, Galez C, Le Dantec R, Volkov Y, Mugnier Y, Prina-Mello A, 2018. Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient BiFeO3 nanoparticles for harmonic bio-imaging. Scientific Reports, 8: 1-10.
  • Dao NN, Dai LM, Pham NC, Doan TD, Nguyen THC, Nguyen QB, Duong TL, 2016. Low-temperature synthesis and investigations on photocatalytic activity of nanoparticles BiFeO3 for methylene blue and methylene orange degradation and some toxic organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7: 045003.
  • Dong S, Liu JM, Cheong SW, Ren Z, 2015. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 64: 519-626. Du Yi, Cheng ZX, Dou SX, Shahbazi M, Wang XL, 2010. Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies. Thin Solid Films, 518: e5-e8.
  • Fischer P, Polomska M, Sosnowska I, Szymanski M, 1980. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics, 13: 1931.
  • Goswami S, Bhattacharya D, Keeney L, Maity T, Kaushik SD, Siruguri V, Das Gopes C, Yang H, Li W, Gu CZhi, Pemble ME, Roy S, 2014. Large magnetoelectric coupling in nanoscale BiFeO3 from direct electrical measurements. Physical Review B, 90: 104402.
  • Hanif S, Hassan M, Riaz S, Atiq S, Hussain SS, Naseem S, Murtaza G, 2017. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique. Results in Physics, 7: 3190-95.
  • Hasan M, Basith MA, Zubair MA, Hossain MS, Mahbub R, Hakim MA, Islam MF, 2016. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. Journal of Alloys and Compounds, 687: 701-06.
  • Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW, 2004. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429: 392-95.
  • Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R, 2011. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 5: 31-34.
  • Karoblis D, Griesiute D, Mazeika K, Baltrunas D, Karpinsky DV, Lukowiak A, Gluchowski P, Raudonis R, Katelnikovas A, Zarkov A, 2020. A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3. Materials, 13: 3035.
  • Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S, 2007. Room-Temperature Reversible Spin Hall Effect. Physical Review Letters, 98: 156601.
  • Kundys B, Simon C, Martin C, 2008. Effect of magnetic field and temperature on the ferroelectric loop in MnWO4. Physical Review B, 77: 172402.
  • Ahmed NM, Sabah FA, Abdulgafour HI, Alsadig A, Sulieman A, Alkhoaryef M, 2019. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13: 102159.
  • Bibes M, Barthelemy A, 2007. Oxide spintronics, IEEE transactions on electron devices, 54: 1003-23.
  • Catalan G, Scott JF, 2009. Physics and applications of bismuth ferrite. Advanced Materials, 21: 2463-85.
  • Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW, 2009. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324: 63-66.
  • Clarke G, Rogov A, McCarthy S, Bonacina L, Gunko Y, Galez C, Le Dantec R, Volkov Y, Mugnier Y, Prina-Mello A, 2018. Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient BiFeO3 nanoparticles for harmonic bio-imaging. Scientific Reports, 8: 1-10.
  • Dao NN, Dai LM, Pham NC, Doan TD, Nguyen THC, Nguyen QB, Duong TL, 2016. Low-temperature synthesis and investigations on photocatalytic activity of nanoparticles BiFeO3 for methylene blue and methylene orange degradation and some toxic organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7: 045003.
  • Dong S, Liu JM, Cheong SW, Ren Z, 2015. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 64: 519-626.
  • Du Yi, Cheng ZX, Dou SX, Shahbazi M, Wang XL, 2010. Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies. Thin Solid Films, 518: e5-e8.
  • Fischer P, Polomska M, Sosnowska I, Szymanski M, 1980. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics, 13: 1931.
  • Goswami S, Bhattacharya D, Keeney L, Maity T, Kaushik SD, Siruguri V, Das Gopes C, Yang H, Li W, Gu CZhi, Pemble ME, Roy S, 2014. Large magnetoelectric coupling in nanoscale BiFeO3 from direct electrical measurements. Physical Review B, 90: 104402.
  • Hanif S, Hassan M, Riaz S, Atiq S, Hussain SS, Naseem S, Murtaza G, 2017. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique. Results in Physics, 7: 3190-95.
  • Hasan M, Basith MA, Zubair MA, Hossain MS, Mahbub R, Hakim MA, Islam MF, 2016. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. Journal of Alloys and Compounds, 687: 701-06.
  • Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW, 2004. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429: 392-95.
  • Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R, 2011. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 5: 31-34.
  • Karoblis D, Griesiute D, Mazeika K, Baltrunas D, Karpinsky DV, Lukowiak A, Gluchowski P, Raudonis R, Katelnikovas A, Zarkov A, 2020. A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3. Materials, 13: 3035.
  • Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S, 2007. Room-Temperature Reversible Spin Hall Effect. Physical Review Letters, 98: 156601.
  • Kundys B, Simon C, Martin C, 2008. Effect of magnetic field and temperature on the ferroelectric loop in MnWO4. Physical Review B, 77: 172402.
  • Layek S, Saha S, Verma HC, 2013. Preparation, structural and magnetic studies on BiFe1-xCrxO3 (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles. AIP Advances, 3: 032140.
  • Mohanty S, Choudhary RNP, 2015. Dielectric and Electrical Properties of BiFeO3–LiTaO3 Systems. Journal of Electronic Materials, 44: 2359-68.
  • Nadeem M, Khan W, Khan S, Shoeb M, Husain S, Mobin M, 2018. Significant enhancement in photocatalytic performance of Ni doped BiFeO3 nanoparticles. Materials Research Express, 5: 065506.
  • Ramesh R, Spaldin NA, 2010. Multiferroics: progress and prospects in thin films. Nanoscience And Technology: A Collection of Reviews from Nature Journals: 20-28.
  • Ruan J, Li C, Yuan Z, Wang P, Li A, Wu D, 2016. Four-state non-volatile memory in a multiferroic spin filter tunnel junction. Applied Physics Letters, 109: 252903.
  • Ryu Ju, Baek CW, Park DS, Jeong DY, 2010. Multiferroic BiFeO3 thick film fabrication by aerosol deposition. Metals and Materials International, 16: 639-42.
  • Sheoran N, Kumar V, Kumar A, 2019. Comparative study of structural, magnetic and dielectric properties of CoFe2O4 @ BiFeO3 and BiFeO3 @ CoFe2O4 core-shell nanocomposites. Journal of Magnetism and Magnetic Materials, 475: 30-37.
  • Srinivas V, Raghavender AT, Kumar KV, 2016. Structural and Magnetic Properties of Mn Doped BiFeO3 Nanomaterials. Physics Research International, 2016: 4835328.
  • Sukhov A., Usadel K. D., Nowak U., 2008. Ferromagnetic resonance in an ensemble of nanoparticles with randomly distributed anisotropy axes. Journal of Magnetism and Magnetic Materials, 320: 31-35.
  • Surowiak Z, Bochenek D, 2008. Multiferroic materials for sensors, transducers and memory devices.
  • Tokura Y, Seki S, Nagaosa N, 2014. Multiferroics of spin origin. Reports on Progress in Physics, 77: 076501.
  • Topkaya R, 2017. Effect of composition and temperature on the magnetic properties of BaBixLaxFe(12-2x)O19 (0.0 ≤ x ≤ 0.2) hexaferrites. Applied Physics A, 123: 488.
  • Topkaya R, Baykal A, Demir A, 2013. Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. Journal of nanoparticle research, 15: 1-18.
  • Wang KF, Liu J-M, Ren ZF, 2009. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 58: 321-448.
Year 2021, Volume: 11 Issue: 4, 2737 - 2745, 15.12.2021
https://doi.org/10.21597/jist.952882

Abstract

Project Number

2017-FBE-A24

References

  • Ahmed NM, Sabah FA, Abdulgafour HI, Alsadig A, Sulieman A, Alkhoaryef M, 2019. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13: 102159.
  • Bibes M, Barthelemy A, 2007. Oxide spintronics, IEEE transactions on electron devices, 54: 1003-23.
  • Catalan G, Scott JF, 2009. Physics and applications of bismuth ferrite. Advanced Materials, 21: 2463-85.
  • Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW, 2009. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324: 63-66.
  • Clarke G, Rogov A, McCarthy S, Bonacina L, Gunko Y, Galez C, Le Dantec R, Volkov Y, Mugnier Y, Prina-Mello A, 2018. Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient BiFeO3 nanoparticles for harmonic bio-imaging. Scientific Reports, 8: 1-10.
  • Dao NN, Dai LM, Pham NC, Doan TD, Nguyen THC, Nguyen QB, Duong TL, 2016. Low-temperature synthesis and investigations on photocatalytic activity of nanoparticles BiFeO3 for methylene blue and methylene orange degradation and some toxic organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7: 045003.
  • Dong S, Liu JM, Cheong SW, Ren Z, 2015. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 64: 519-626. Du Yi, Cheng ZX, Dou SX, Shahbazi M, Wang XL, 2010. Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies. Thin Solid Films, 518: e5-e8.
  • Fischer P, Polomska M, Sosnowska I, Szymanski M, 1980. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics, 13: 1931.
  • Goswami S, Bhattacharya D, Keeney L, Maity T, Kaushik SD, Siruguri V, Das Gopes C, Yang H, Li W, Gu CZhi, Pemble ME, Roy S, 2014. Large magnetoelectric coupling in nanoscale BiFeO3 from direct electrical measurements. Physical Review B, 90: 104402.
  • Hanif S, Hassan M, Riaz S, Atiq S, Hussain SS, Naseem S, Murtaza G, 2017. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique. Results in Physics, 7: 3190-95.
  • Hasan M, Basith MA, Zubair MA, Hossain MS, Mahbub R, Hakim MA, Islam MF, 2016. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. Journal of Alloys and Compounds, 687: 701-06.
  • Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW, 2004. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429: 392-95.
  • Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R, 2011. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 5: 31-34.
  • Karoblis D, Griesiute D, Mazeika K, Baltrunas D, Karpinsky DV, Lukowiak A, Gluchowski P, Raudonis R, Katelnikovas A, Zarkov A, 2020. A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3. Materials, 13: 3035.
  • Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S, 2007. Room-Temperature Reversible Spin Hall Effect. Physical Review Letters, 98: 156601.
  • Kundys B, Simon C, Martin C, 2008. Effect of magnetic field and temperature on the ferroelectric loop in MnWO4. Physical Review B, 77: 172402.
  • Ahmed NM, Sabah FA, Abdulgafour HI, Alsadig A, Sulieman A, Alkhoaryef M, 2019. The effect of post annealing temperature on grain size of indium-tin-oxide for optical and electrical properties improvement. Results in Physics, 13: 102159.
  • Bibes M, Barthelemy A, 2007. Oxide spintronics, IEEE transactions on electron devices, 54: 1003-23.
  • Catalan G, Scott JF, 2009. Physics and applications of bismuth ferrite. Advanced Materials, 21: 2463-85.
  • Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW, 2009. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 324: 63-66.
  • Clarke G, Rogov A, McCarthy S, Bonacina L, Gunko Y, Galez C, Le Dantec R, Volkov Y, Mugnier Y, Prina-Mello A, 2018. Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient BiFeO3 nanoparticles for harmonic bio-imaging. Scientific Reports, 8: 1-10.
  • Dao NN, Dai LM, Pham NC, Doan TD, Nguyen THC, Nguyen QB, Duong TL, 2016. Low-temperature synthesis and investigations on photocatalytic activity of nanoparticles BiFeO3 for methylene blue and methylene orange degradation and some toxic organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7: 045003.
  • Dong S, Liu JM, Cheong SW, Ren Z, 2015. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 64: 519-626.
  • Du Yi, Cheng ZX, Dou SX, Shahbazi M, Wang XL, 2010. Enhancement of magnetization and dielectric properties of chromium-doped BiFeO3 with tunable morphologies. Thin Solid Films, 518: e5-e8.
  • Fischer P, Polomska M, Sosnowska I, Szymanski M, 1980. Temperature dependence of the crystal and magnetic structures of BiFeO3. Journal of Physics C: Solid State Physics, 13: 1931.
  • Goswami S, Bhattacharya D, Keeney L, Maity T, Kaushik SD, Siruguri V, Das Gopes C, Yang H, Li W, Gu CZhi, Pemble ME, Roy S, 2014. Large magnetoelectric coupling in nanoscale BiFeO3 from direct electrical measurements. Physical Review B, 90: 104402.
  • Hanif S, Hassan M, Riaz S, Atiq S, Hussain SS, Naseem S, Murtaza G, 2017. Structural, magnetic, dielectric and bonding properties of BiMnO3 grown by co-precipitation technique. Results in Physics, 7: 3190-95.
  • Hasan M, Basith MA, Zubair MA, Hossain MS, Mahbub R, Hakim MA, Islam MF, 2016. Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn. Journal of Alloys and Compounds, 687: 701-06.
  • Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW, 2004. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429: 392-95.
  • Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R, 2011. Coherent terahertz control of antiferromagnetic spin waves. Nature Photonics, 5: 31-34.
  • Karoblis D, Griesiute D, Mazeika K, Baltrunas D, Karpinsky DV, Lukowiak A, Gluchowski P, Raudonis R, Katelnikovas A, Zarkov A, 2020. A Facile Synthesis and Characterization of Highly Crystalline Submicro-Sized BiFeO3. Materials, 13: 3035.
  • Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S, 2007. Room-Temperature Reversible Spin Hall Effect. Physical Review Letters, 98: 156601.
  • Kundys B, Simon C, Martin C, 2008. Effect of magnetic field and temperature on the ferroelectric loop in MnWO4. Physical Review B, 77: 172402.
  • Layek S, Saha S, Verma HC, 2013. Preparation, structural and magnetic studies on BiFe1-xCrxO3 (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles. AIP Advances, 3: 032140.
  • Mohanty S, Choudhary RNP, 2015. Dielectric and Electrical Properties of BiFeO3–LiTaO3 Systems. Journal of Electronic Materials, 44: 2359-68.
  • Nadeem M, Khan W, Khan S, Shoeb M, Husain S, Mobin M, 2018. Significant enhancement in photocatalytic performance of Ni doped BiFeO3 nanoparticles. Materials Research Express, 5: 065506.
  • Ramesh R, Spaldin NA, 2010. Multiferroics: progress and prospects in thin films. Nanoscience And Technology: A Collection of Reviews from Nature Journals: 20-28.
  • Ruan J, Li C, Yuan Z, Wang P, Li A, Wu D, 2016. Four-state non-volatile memory in a multiferroic spin filter tunnel junction. Applied Physics Letters, 109: 252903.
  • Ryu Ju, Baek CW, Park DS, Jeong DY, 2010. Multiferroic BiFeO3 thick film fabrication by aerosol deposition. Metals and Materials International, 16: 639-42.
  • Sheoran N, Kumar V, Kumar A, 2019. Comparative study of structural, magnetic and dielectric properties of CoFe2O4 @ BiFeO3 and BiFeO3 @ CoFe2O4 core-shell nanocomposites. Journal of Magnetism and Magnetic Materials, 475: 30-37.
  • Srinivas V, Raghavender AT, Kumar KV, 2016. Structural and Magnetic Properties of Mn Doped BiFeO3 Nanomaterials. Physics Research International, 2016: 4835328.
  • Sukhov A., Usadel K. D., Nowak U., 2008. Ferromagnetic resonance in an ensemble of nanoparticles with randomly distributed anisotropy axes. Journal of Magnetism and Magnetic Materials, 320: 31-35.
  • Surowiak Z, Bochenek D, 2008. Multiferroic materials for sensors, transducers and memory devices.
  • Tokura Y, Seki S, Nagaosa N, 2014. Multiferroics of spin origin. Reports on Progress in Physics, 77: 076501.
  • Topkaya R, 2017. Effect of composition and temperature on the magnetic properties of BaBixLaxFe(12-2x)O19 (0.0 ≤ x ≤ 0.2) hexaferrites. Applied Physics A, 123: 488.
  • Topkaya R, Baykal A, Demir A, 2013. Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. Journal of nanoparticle research, 15: 1-18.
  • Wang KF, Liu J-M, Ren ZF, 2009. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 58: 321-448.
There are 47 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Ramazan Topkaya 0000-0002-5376-0199

Kenan Çiçek 0000-0001-5686-6872

Adem Koçyiğit 0000-0002-8502-2860

Project Number 2017-FBE-A24
Publication Date December 15, 2021
Submission Date June 15, 2021
Acceptance Date August 19, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Topkaya, R., Çiçek, K., & Koçyiğit, A. (2021). Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3. Journal of the Institute of Science and Technology, 11(4), 2737-2745. https://doi.org/10.21597/jist.952882
AMA Topkaya R, Çiçek K, Koçyiğit A. Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3. J. Inst. Sci. and Tech. December 2021;11(4):2737-2745. doi:10.21597/jist.952882
Chicago Topkaya, Ramazan, Kenan Çiçek, and Adem Koçyiğit. “Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3”. Journal of the Institute of Science and Technology 11, no. 4 (December 2021): 2737-45. https://doi.org/10.21597/jist.952882.
EndNote Topkaya R, Çiçek K, Koçyiğit A (December 1, 2021) Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3. Journal of the Institute of Science and Technology 11 4 2737–2745.
IEEE R. Topkaya, K. Çiçek, and A. Koçyiğit, “Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3”, J. Inst. Sci. and Tech., vol. 11, no. 4, pp. 2737–2745, 2021, doi: 10.21597/jist.952882.
ISNAD Topkaya, Ramazan et al. “Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3”. Journal of the Institute of Science and Technology 11/4 (December 2021), 2737-2745. https://doi.org/10.21597/jist.952882.
JAMA Topkaya R, Çiçek K, Koçyiğit A. Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3. J. Inst. Sci. and Tech. 2021;11:2737–2745.
MLA Topkaya, Ramazan et al. “Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3”. Journal of the Institute of Science and Technology, vol. 11, no. 4, 2021, pp. 2737-45, doi:10.21597/jist.952882.
Vancouver Topkaya R, Çiçek K, Koçyiğit A. Synthesis and Investigation of Structural and Magnetic Properties of Nickel Doped BiFeO3. J. Inst. Sci. and Tech. 2021;11(4):2737-45.