Research Article
BibTex RIS Cite

Investigation of Enzyme Inhibition Effects of Interferon Beta-1a Drug

Year 2022, Volume: 12 Issue: 4, 2331 - 2339, 01.12.2022
https://doi.org/10.21597/jist.1132496

Abstract

In this study, the enzyme inhibition effects of interferon beta-1a (IFNβ-1a) have been investigated. For this purpose, enzyme inhibition effects of IFNβ-1a on human erythrocyte carbonic anhydrase isoenzyme I and II (hCA I and II) isoenzymes and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) enzymes have been examined by in vitro analysis. In addition, hCA I and II isoenzymes were purified from human erythrocytes by Sepharose-4B-L-Tyrosine affinity column chromatography. Then, inhibition effects of IFNβ-1a on hCA I, II isoenzymes and AChE, BChE enzymes have been determined and IC50 and Ki values have been calculated. In this study, IC50 and Ki values have been found to be 1.73 μM and 0.78 ± 0.21 μM for hCA I isoenzyme, respectively. The same parameters have been calculated as 1.33 μM and 1.46 ± 0.13 μM for the hCA II isoenzyme. In studies on the enzyme, IC50 and Ki values have been found to be 13.86 μM and 14.47 ± 4.81 μM for AChE enzyme, respectively. Finally, in studies on the enzyme, the IC50 and Ki values were found to be 18.72 μM and 12.80 ± 4.38 μM for the BChE enzyme, respectively. In enzyme studies, acetazolamide was used for both CA isoenzymes and Tacrine was used for AChE and BChE enzymes as standard.

References

  • Bayrak Ç, Taslimi P, Gülçin İ, Menzek A, 2017. The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorganic Chemistry, 72: 359-366.
  • Burmaoglu S, Yilmaz AO, Taslimi P, Algul O, Kilic D, Gulcin I, 2017. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Archiv der Pharmazie Chemistry in Life Sciences, 351: 351:e1700314.
  • Chunga JH, Hong SH, Seo N, Kim TS, An HJ, Lee P, Shin EC, Kim HM, 2020. Structure-based glycoengineering of interferon lambda 4 enhances its productivity and antiviral potency. Cytokine, 125:154833.
  • Daryadel S, Atmaca U, Taslimi P, Gülçin İ, Çelik M, 2018. Novel sulfamate derivatives of menthol: Synthesis, characterization, and cholinesterases and carbonic anhydrase enzymes inhibition properties. Archiv der Pharmazie Chemistry in Life Sciences, ardp.e1800209.
  • Denizli A, Özden AK, 2014. Biyokimya, Palme yayıncılık, 7. Baskıdan çeviri ISBN: 978-605-355-202-4, Ankara.
  • Durmaz L, 2015. Some Coumarin Derivatives: Their Antioxidant Capacities and Investigation of Their Efects on Human Carbonic Anhydrase Izoenzymes (hCA I and II) and Acetylcholinesterase Enzymes, Atatürk University Graduate School of Natural and Applied Sciences, Department of Chemistry, Ph.D. Thesis, Erzurum.
  • Ekiz M, Tutar A, Ökten S, Bütün B, Koçyiğit ÜM, Taslimi P, Topçu G, 2018. Synthesis, characterization, and SAR of arylated indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors. Archiv der Pharmazie Chemistry in Life Sciences, 351: e1800167.
  • Ellman GL, Courtney KD, Andres V, Featherston RM, 1961. A new and rapidcolorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
  • Erdemir F, Celepci DB, Aktaş A, Taslimi P, Gök Y, Karabıyık H, Gülçin İ, 2018. 2- Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Journal of Molecular Structure, 1155: 797-806.
  • Garibov E, Taslimi P, Sujayev A, Bingol Z, Çetinkaya S, Gulçin İ, Beydemir S, Farzaliyev V, Alwasel SH, Supuran CT, 2016. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(S3): 1-9.
  • Gondolova G, Taslimi P, Medjidov A, Farzaliyev V, Sujayev A, Huseynova M, Şahin O, Yalçın B, Turkan F, Gulçin İ, 2018. Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni(II) and Co(II) complexes with N-salicyloil-N'-maleoil-hydrazine as anticholinergic and antidiabetic agents. Journal of Biochemical and Molecular Toxicology, 32: e22197.
  • Gul HI, Tuğrak M, Sakagami H, Taslimi P, Gulcin I, Supuran CT, 2016. Synthesis and bioactivity studies on new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3h-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 31:6, 1619-1624.
  • Gulçin İ, Abbasova M, Taslimi P, Huyut Z, Safarova L, Sujayev A, Farzaliyev V, Beydemir Ş, Alwasel SH, Supuran CT, 2017. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyryl cholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32:1, 1174-1182.
  • Köksal Z, Alım Z, Bayrak S, Gülcin I, Özdemir H, 2019. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. Journal of Biochemical and Molecular Toxicology, 33:5, e22300.
  • Lehninger AL, Nelson DL, Cox MM, 2005. Principles of Biochemistry, 3. Baskıdan çeviri, Çeviri editörü: Kılıç N, Palme Yayıncılık. Li Q, Yang H, Chen Y, Sun H, 2017. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. European Journal of Medicinal Chemistry, 132: 294-309.
  • Lineweaver H, Burk D, 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.
  • Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gülcin I, 2022. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. Arabian Journal of Chemistry, 15, 103645.
  • McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A, 2015. Type I interferons in infectious disease. Nature Reviews Immunology, 15: 87–103.
  • Mikol D, Lopez-Bresnahan M, Taraskiewicz S, Chang P, Rangnow J, on behalf of the Rebiject TM Study Group, 2005. A randomized, multicentre, open-label, parallel-group trial of the tolerability of interferon beta-1a (Rebif R) administered by autoinjection or manual injection in relapsing/remitting multiple sclerosis. Multiple Sclerosis, 11: 585-591.
  • Nelson PT, Wang WX, Rajeev BW, 2008. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathology, 18:130-138.
  • Ökten S, Ekiz M, Koçyiğit ÜM, Tutar A, Çelik İ, Akkurt M, Gökalp F, Taslimi P, Gülçin İ, 2019. Synthesis, characterization, crystal structures, theoretical calculations and biological evaluation of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors. Journal of Molecular Structure, 1175: 906-915.
  • Özbey F, Taslimi P, Gülçin İ, Maraş A, Göksu S, Supuran CT, 2016. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(S2): 79-85.
  • Paty DW, Hartung HP, Ebers GC, Soelberg-Sorensen P, Abramsky O, Kesselring J ve ark., 1999. Management of relapsing-remitting multiple sclerosis: diagnosis and treatment guide-lines. European Journal of Neurology, 6: S1-35.
  • Peters M, 1996. Actions of cytokines on the immune response and viral interactions: an overview. Journal of Hepatology, 23(4): 909–916.
  • Platanias LC, 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Reviews Immunology, 5: 375–386.
  • Polat Köse L, Gulcin, I, 2021. Evaluation of the antioxidant and antiradical properties of some phyto and mammalian lignans. Molecules, 26, 7099.
  • Rudick RA, Goelz SE, 2011. Beta-interferon for multiple sclerosis. Experimental cell research, 317:1301-1311.
  • Sen GC, Lengyel P, 1992. The interferon system. A bird's eye view of its biochemistry. Journal of Biological Chemistry, 267(8):5017-5020.
  • Sujayev A, Garibov E, Taslimi P, Gulçin İ, Gojayeva S, Farzaliyev V, Alwasel SH and Supuran CT, 2016. Synthesis of some tetrahydropyrimidine-5-carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6): 1531-1539.
  • Taslimi P, Osmanova S, Caglayan C, Turkan F, Sardarova S, Farzaliyev V, Sujayev A, Sadeghian N, Gulçin İ, 2018. Novel amides of 1,1-bis-(carboxymethylthio)-1-arylethanes: Synthesis, characterization, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibitory properties. Journal of Biochemical and Molecular Toxicology, 32: e22191.
  • Turkan F, Cetin A, Taslimi P, Gulçin İ, 2018. Some pyrazoles derivatives: Potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Archiv der Pharmazie Chemistry in Life Sciences, 351:e1800200.
  • Tyring SK, 1995. Interferons: biochemistry and mechanisms of action. American Journal of Obstetrics and Gynecology, 172: 1350–1353.
  • Van Boxel-Dezaire AH, Rani MR, Stark GR, 2006. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity, 25(3): 361–372.
  • Vavougios GD, Mavridis T, Artemiadis A, Krogfelt KA, Hadjigeorgiou G, 2022. Trained immunity in viral infections, Alzheimer's disease and multiple sclerosis: A convergence in type I interferon signalling and IFNβ-1a. BBA - Molecular Basis of Disease, 1868:166430.
  • Verpoorte JA, Mehta S, Edsall JT, 1967. Esterase Activities of Human Carbonic Anhydrases B and C. Journal of Biological Chemistry, 242: 4221-4229.
  • Wack A, Terczynska-Dyla E, Hartmann R, 2015. Guarding the frontiers: the biology of type III interferons. Nature Reviews Immunology, 16: 802–809.
  • Walther E, Hohlfeld R, 1999. Multiple sclerosis. Side-effects of interferon beta therapy and their management. Neurology, 53: 1622-27.
  • Yu L, Cao R, Yi W, Yan Q, Chen Z, Ma L, Peng W, Song H, 2010. Synthesis and binding ability of 1,2,3-triazole-based triterpenoid receptors for recognition of Hg(2þ) ion. Bioorganic & Medicinal Chemistry Letters, 20: 3254-3258.
  • Zhang C, Du QY, Chen LD, Wu WH, Liao SY, Yu LH, Liang XT, 2016. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease. European Journal of Medicinal Chemistry, 116: 200-209.

İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi

Year 2022, Volume: 12 Issue: 4, 2331 - 2339, 01.12.2022
https://doi.org/10.21597/jist.1132496

Abstract

Bu araştırmada, interferon beta-1a (IFNβ-1a) ilacının enzim inhibisyon etkileri araştırılmıştır. Bu amaçla IFNβ-1a ilacının insan eritrosit karbonik anhidraz izoenzimi I ve II (hCA I ve II) ile asetilkolinesteraz (AChE), bütirilkolinesteraz (BChE) enzimleri üzerine in vitro da enzim analizleriyle enzim inhibisyon etkileri açıklanmıştır. Bununla birlikte Sepharose-4B-L-Tirozin afinite kolon kromatografisi ile hCA I ve II izoenzimleri insan eritrositlerinden saflaştırıldı. Ardından IFNβ-1a ilacının hCA I, II izoenzimleri ve AChE, BChE enzimleri üzerine inhibisyon etkileri belirlenmiştir ve IC50 ve Ki değerleri hesaplanmıştır. Bu çalışmada hCA I izoenzimi için IC50 ve Ki değerleri sırasıyla 1.73 μM ve 0.78 ± 0.21μM olduğu bulunmuştur. Aynı parametreler hCA II izoenzimi için 1.33 μM ve 1.46 ± 0.13μM olduğu hesaplanmıştır. Enzim ile ilgili yapılan çalışmalarda IC50 ve Ki değerleri AChE enzimi için sırasıyla 13.86 μM ve 14.47 ± 4.81μM olduğu bulunmuştur. Enzim ile ilgili yapılan çalışmalarda son olarak IC50 ve Ki değerleri BChE enzimi için sırasıyla 18.72 μM ve 12.80± 4.38 μM olduğu bulunmuştur. Enzim ile ilgili yapılan çalışmalarda her iki CA izoenzimi için asetazolamit, AChE ve BChE enzimleri için ise Takrin standart olarak kullanılmıştır

References

  • Bayrak Ç, Taslimi P, Gülçin İ, Menzek A, 2017. The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorganic Chemistry, 72: 359-366.
  • Burmaoglu S, Yilmaz AO, Taslimi P, Algul O, Kilic D, Gulcin I, 2017. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Archiv der Pharmazie Chemistry in Life Sciences, 351: 351:e1700314.
  • Chunga JH, Hong SH, Seo N, Kim TS, An HJ, Lee P, Shin EC, Kim HM, 2020. Structure-based glycoengineering of interferon lambda 4 enhances its productivity and antiviral potency. Cytokine, 125:154833.
  • Daryadel S, Atmaca U, Taslimi P, Gülçin İ, Çelik M, 2018. Novel sulfamate derivatives of menthol: Synthesis, characterization, and cholinesterases and carbonic anhydrase enzymes inhibition properties. Archiv der Pharmazie Chemistry in Life Sciences, ardp.e1800209.
  • Denizli A, Özden AK, 2014. Biyokimya, Palme yayıncılık, 7. Baskıdan çeviri ISBN: 978-605-355-202-4, Ankara.
  • Durmaz L, 2015. Some Coumarin Derivatives: Their Antioxidant Capacities and Investigation of Their Efects on Human Carbonic Anhydrase Izoenzymes (hCA I and II) and Acetylcholinesterase Enzymes, Atatürk University Graduate School of Natural and Applied Sciences, Department of Chemistry, Ph.D. Thesis, Erzurum.
  • Ekiz M, Tutar A, Ökten S, Bütün B, Koçyiğit ÜM, Taslimi P, Topçu G, 2018. Synthesis, characterization, and SAR of arylated indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors. Archiv der Pharmazie Chemistry in Life Sciences, 351: e1800167.
  • Ellman GL, Courtney KD, Andres V, Featherston RM, 1961. A new and rapidcolorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
  • Erdemir F, Celepci DB, Aktaş A, Taslimi P, Gök Y, Karabıyık H, Gülçin İ, 2018. 2- Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Journal of Molecular Structure, 1155: 797-806.
  • Garibov E, Taslimi P, Sujayev A, Bingol Z, Çetinkaya S, Gulçin İ, Beydemir S, Farzaliyev V, Alwasel SH, Supuran CT, 2016. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(S3): 1-9.
  • Gondolova G, Taslimi P, Medjidov A, Farzaliyev V, Sujayev A, Huseynova M, Şahin O, Yalçın B, Turkan F, Gulçin İ, 2018. Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni(II) and Co(II) complexes with N-salicyloil-N'-maleoil-hydrazine as anticholinergic and antidiabetic agents. Journal of Biochemical and Molecular Toxicology, 32: e22197.
  • Gul HI, Tuğrak M, Sakagami H, Taslimi P, Gulcin I, Supuran CT, 2016. Synthesis and bioactivity studies on new 4-(3-(4-substitutedphenyl)-3a,4-dihydro-3h-indeno[1,2-c]pyrazol-2-yl) benzenesulfonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 31:6, 1619-1624.
  • Gulçin İ, Abbasova M, Taslimi P, Huyut Z, Safarova L, Sujayev A, Farzaliyev V, Beydemir Ş, Alwasel SH, Supuran CT, 2017. Synthesis and biological evaluation of aminomethyl and alkoxymethyl derivatives as carbonic anhydrase, acetylcholinesterase and butyryl cholinesterase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32:1, 1174-1182.
  • Köksal Z, Alım Z, Bayrak S, Gülcin I, Özdemir H, 2019. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. Journal of Biochemical and Molecular Toxicology, 33:5, e22300.
  • Lehninger AL, Nelson DL, Cox MM, 2005. Principles of Biochemistry, 3. Baskıdan çeviri, Çeviri editörü: Kılıç N, Palme Yayıncılık. Li Q, Yang H, Chen Y, Sun H, 2017. Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. European Journal of Medicinal Chemistry, 132: 294-309.
  • Lineweaver H, Burk D, 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.
  • Mahmudov I, Demir Y, Sert Y, Abdullayev Y, Sujayev A, Alwasel SH, Gülcin I, 2022. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. Arabian Journal of Chemistry, 15, 103645.
  • McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A, 2015. Type I interferons in infectious disease. Nature Reviews Immunology, 15: 87–103.
  • Mikol D, Lopez-Bresnahan M, Taraskiewicz S, Chang P, Rangnow J, on behalf of the Rebiject TM Study Group, 2005. A randomized, multicentre, open-label, parallel-group trial of the tolerability of interferon beta-1a (Rebif R) administered by autoinjection or manual injection in relapsing/remitting multiple sclerosis. Multiple Sclerosis, 11: 585-591.
  • Nelson PT, Wang WX, Rajeev BW, 2008. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathology, 18:130-138.
  • Ökten S, Ekiz M, Koçyiğit ÜM, Tutar A, Çelik İ, Akkurt M, Gökalp F, Taslimi P, Gülçin İ, 2019. Synthesis, characterization, crystal structures, theoretical calculations and biological evaluation of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors. Journal of Molecular Structure, 1175: 906-915.
  • Özbey F, Taslimi P, Gülçin İ, Maraş A, Göksu S, Supuran CT, 2016. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(S2): 79-85.
  • Paty DW, Hartung HP, Ebers GC, Soelberg-Sorensen P, Abramsky O, Kesselring J ve ark., 1999. Management of relapsing-remitting multiple sclerosis: diagnosis and treatment guide-lines. European Journal of Neurology, 6: S1-35.
  • Peters M, 1996. Actions of cytokines on the immune response and viral interactions: an overview. Journal of Hepatology, 23(4): 909–916.
  • Platanias LC, 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nature Reviews Immunology, 5: 375–386.
  • Polat Köse L, Gulcin, I, 2021. Evaluation of the antioxidant and antiradical properties of some phyto and mammalian lignans. Molecules, 26, 7099.
  • Rudick RA, Goelz SE, 2011. Beta-interferon for multiple sclerosis. Experimental cell research, 317:1301-1311.
  • Sen GC, Lengyel P, 1992. The interferon system. A bird's eye view of its biochemistry. Journal of Biological Chemistry, 267(8):5017-5020.
  • Sujayev A, Garibov E, Taslimi P, Gulçin İ, Gojayeva S, Farzaliyev V, Alwasel SH and Supuran CT, 2016. Synthesis of some tetrahydropyrimidine-5-carboxylates, determination of their metal chelating effects and inhibition profiles against acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(6): 1531-1539.
  • Taslimi P, Osmanova S, Caglayan C, Turkan F, Sardarova S, Farzaliyev V, Sujayev A, Sadeghian N, Gulçin İ, 2018. Novel amides of 1,1-bis-(carboxymethylthio)-1-arylethanes: Synthesis, characterization, acetylcholinesterase, butyrylcholinesterase, and carbonic anhydrase inhibitory properties. Journal of Biochemical and Molecular Toxicology, 32: e22191.
  • Turkan F, Cetin A, Taslimi P, Gulçin İ, 2018. Some pyrazoles derivatives: Potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Archiv der Pharmazie Chemistry in Life Sciences, 351:e1800200.
  • Tyring SK, 1995. Interferons: biochemistry and mechanisms of action. American Journal of Obstetrics and Gynecology, 172: 1350–1353.
  • Van Boxel-Dezaire AH, Rani MR, Stark GR, 2006. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity, 25(3): 361–372.
  • Vavougios GD, Mavridis T, Artemiadis A, Krogfelt KA, Hadjigeorgiou G, 2022. Trained immunity in viral infections, Alzheimer's disease and multiple sclerosis: A convergence in type I interferon signalling and IFNβ-1a. BBA - Molecular Basis of Disease, 1868:166430.
  • Verpoorte JA, Mehta S, Edsall JT, 1967. Esterase Activities of Human Carbonic Anhydrases B and C. Journal of Biological Chemistry, 242: 4221-4229.
  • Wack A, Terczynska-Dyla E, Hartmann R, 2015. Guarding the frontiers: the biology of type III interferons. Nature Reviews Immunology, 16: 802–809.
  • Walther E, Hohlfeld R, 1999. Multiple sclerosis. Side-effects of interferon beta therapy and their management. Neurology, 53: 1622-27.
  • Yu L, Cao R, Yi W, Yan Q, Chen Z, Ma L, Peng W, Song H, 2010. Synthesis and binding ability of 1,2,3-triazole-based triterpenoid receptors for recognition of Hg(2þ) ion. Bioorganic & Medicinal Chemistry Letters, 20: 3254-3258.
  • Zhang C, Du QY, Chen LD, Wu WH, Liao SY, Yu LH, Liang XT, 2016. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease. European Journal of Medicinal Chemistry, 116: 200-209.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Lokman Durmaz 0000-0002-3773-5751

Early Pub Date November 25, 2022
Publication Date December 1, 2022
Submission Date June 17, 2022
Acceptance Date September 21, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Durmaz, L. (2022). İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi. Journal of the Institute of Science and Technology, 12(4), 2331-2339. https://doi.org/10.21597/jist.1132496
AMA Durmaz L. İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi. J. Inst. Sci. and Tech. December 2022;12(4):2331-2339. doi:10.21597/jist.1132496
Chicago Durmaz, Lokman. “İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 2331-39. https://doi.org/10.21597/jist.1132496.
EndNote Durmaz L (December 1, 2022) İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi. Journal of the Institute of Science and Technology 12 4 2331–2339.
IEEE L. Durmaz, “İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi”, J. Inst. Sci. and Tech., vol. 12, no. 4, pp. 2331–2339, 2022, doi: 10.21597/jist.1132496.
ISNAD Durmaz, Lokman. “İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi”. Journal of the Institute of Science and Technology 12/4 (December 2022), 2331-2339. https://doi.org/10.21597/jist.1132496.
JAMA Durmaz L. İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi. J. Inst. Sci. and Tech. 2022;12:2331–2339.
MLA Durmaz, Lokman. “İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 2331-9, doi:10.21597/jist.1132496.
Vancouver Durmaz L. İnterferon Beta-1a İlacının Enzim İnhibisyon Etkilerinin İncelenmesi. J. Inst. Sci. and Tech. 2022;12(4):2331-9.