Research Article
BibTex RIS Cite

Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi

Year 2023, Volume: 13 Issue: 3, 2120 - 2129, 01.09.2023
https://doi.org/10.21597/jist.1220136

Abstract

Makine, gıda, tekstil ve uçak/uzay sanayi gibi endüstriyel alanlarda makine elemanı olarak, rulman kafeslerinde, keçe, conta ve dişlilerde son yıllarda çok farklı polimer ve/veya polimer esaslı kompozit malzemeler kullanılmaktadır. Bu malzemelerden birisi de grafit ve poli-tetra-flor-etilen (PTFE) katkılı poliamid-imid (PAI) polimer kompozitidir. Düşük genleşme katsayısı, yüksek mukavemet, 275 oC gibi yüksek ısıl direnç ve kimyasal direnç özellikleriyle geleneksel poliamid, polioksimetilen, poli-eter-eter-keton gibi malzemelere alternatif olabilecek özelliktedir. Bu çalışmada grafit ve poli-tetra-flor-etilen (PTFE) katkılı poliamid-imidin aşınma ve sürtünme davranışları incelenmiştir. Aşınma ve sürtünme deneyleri pim-disk test cihazında yapılmıştır. Deneyler 1.06 MPa sabit basınç altında ve dört farklı hızda (1.0, 2.0, 3.0 ve 4.0 m/s) gerçekleştirilmiştir. Deneyler sonucunda grafit ve PTFE katkılı PAI kompozitin (PAI-Grafit/PTFE) aşınma oranı, sürtünme katsayısı, pim ve çelik disk yüzey sıcaklığı tespit edilmiştir. Uygulanan hızın artırılması ile kompozitin spesifik aşınma oranı artarken sürtünme katsayısı azalmıştır. Buna ilave olarak kompozit pim ve çelik disk yüzey sıcaklıkları yaklaşık 46,8 oC sıcaklığa kadar artmıştır. Kompozitin en düşük aşınma oranı 2.69x10-15 m2/N olarak tespit edilirken en yüksek aşınma oranı 9,2x10-15 m2/N olarak belirlenmiştir. PAI esaslı kompozitin sürtünme katsayısı ise en düşük 0.31 ve en yüksek 0.36 olarak tespit edilmiştir. Ayrıca kompozitin aşınma yüzeyleri incelemeleri optik ve taramalı elektron mikroskobu (SEM) ile incelenmiştir.

Supporting Institution

Sakarya Üniversitesi

Project Number

008-2020

Thanks

Bu çalışma Sakarya Uygulamalı Bilimler Üniversitesi, Bilimsel Araştırma Projeleri kapsamında 008-2020 proje no ile desteklenmiş olup Yazarlar ilgili Kuruma teşekkür eder.

References

  • Akıncı, A., Akbulut, H., & Yılmaz, F. (2003). Floropolimer (Teflon) kaplamaların yapı ve özellikleri. UCTEA J. Chamb. Metall. Mater. Eng, 133, 53-59.
  • Bozan, U., Altuncu, E., & Üstel, F. (2014). Nano partikül takviyeli teflon kaplamaların üretilmesi ve karakterizasyonu. Sakarya University Journal of Science, 18(1), 21-30.
  • Cao, H., Dong, X., Qu, D., Dong, C., Zhao, C., Sun, D. & Wu, B. (2022). Transfer film growth of continuous carbon fiber reinforced thermoplastic poly (ether ether ketone) facilitated by surface texture during dry sliding. Journal of Materials Science, 57(1), 383-397.
  • Çuhadaroğlu, A. D., & Erdal, K. A. R. A. (2018). Grafit: Bir genel değerlendirme. Teknik Bilimler Dergisi, 8(1), 14-33.
  • Gao, Q., Jin, S., Guo, C., Zhang, R., & Jin, M. (2015). Effects of heat-treatment temperature and binder content on the microstructure and thermal conductivity of graphite flake-carbon composites. Fullerenes, Nanotubes and Carbon Nanostructures, 23(12), 1043-1050.
  • Helmroth, E., Rijk, R., Dekker, M., & Jongen, W. (2002). Predictive modelling of migration from packaging materials into food products for regulatory purposes. Trends in Food Science & Technology, 13(3), 102-109.
  • Kamga, L. S., Nguyen, T. D., Emrich, S., Oehler, M., Schmidt, T., Gedan-Smolka, M. & Sauer, B. (2022). The effect of irradiated PTFE on the friction and wear behavior of chemically bonded PA46-PTFE-cb and PA66-PTFE-cb compounds. Wear, 204380.
  • Kaya, F. (2005). Ana hatlarıyla plastikler ve katkı maddeleri. Birsen yayınevi.
  • Kurt, M. (2011). Yüksek performanslı endüstriyel termoplastiklerin yüksek sıcaklıklardaki tribolojik davranışları.
  • Lee, S. M., Lee, S. H., Kang, D. S., & Roh, J. S. (2021). A Study on the Possibility of Bulk Graphite Manufacturing using Coal Tar as a Binder and an Impregnant. Composites Research, 34(1), 51-56.
  • Li, B., Wan, H., Ye, Y., Chen, L., Zhou, H., & Chen, J. (2017). Investigating the effect of LaF3 on the tribological performances of an environment friendly hydrophilic polyamide imide resin bonded solid lubricating coating. Tribology International, 116, 164-171.
  • Liu, Z., Guo, Q., Shi, J., Zhai, G., & Liu, L. (2008). Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon, 46(3), 414-421.
  • McKeen, L. W. (2006). 4-Binders. Fluorinated Coatings and Finishes Handbook; McKeen, LW, Ed.; William Andrew Publishing: Norwich, NY, USA, 45-58.
  • Pleskachevsky, Y. M., & Smurugov, V. A. (1997). Thermal fluctuations at PTFE friction and transfer. Wear, 209(1-2), 123-127.
  • Samyn, P., De Baets, P., Schoukens, G., & Van Driessche, I. (2007). Friction, wear and transfer of pure and internally lubricated cast polyamides at various testing scales. Wear, 262(11-12), 1433-1449.
  • Sheiretov, T., Van Glabbeek, W., & Cusano, C. (1995). Evaluation of the tribological properties of polyimide and poly (amide-imide) polymers in a refrigerant environment. Tribology transactions, 38(4), 914-922.
  • Topcu, İ. & Karaman, E. (2019). Çok Duvarlı Karbon Nanotüp Takviyeli Düzenli/ Düzensiz Şekilli Ti-6Al-4V Kompozitlerin Aşınma Davranışlarının İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 7 (3) , 1249-1260.
  • Ünal, H., & Findik, F. (2008). Friction and wear behaviours of some industrial polyamides against different polymer counterparts under dry conditions. Industrial Lubrication and Tribology, 60(4), 195-200.
  • Ünal, H., & Yetgin, S. H. (2021). Rulmanlı Yatak Uygulamaları İçin Grafit Katkılı PTFE ve PTFE Katkılı Poliamit-6 Polimerlerinin Aşınma ve Sürtünme Performanslarının Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 335-344.
  • Ünal, H., Kurt, M., & Mimaroglu, A. (2012). Tribological performance of industrial polyamide-imide and its composite under different cooling conditions.
  • Ünal, H., Mimaroglu, A., & Demir, Z. (2010). Tribological performance of POM, PTFE and PSU composites used in electrical engineering applications. International Journal of Polymeric Materials, 59(10), 808-817.
  • Wang, Z., & Gao, D. (2013). Comparative investigation on the tribological behavior of reinforced plastic composite under natural seawater lubrication. Materials & Design, 51, 983-988.
  • Yingfei, G., Jiuhua, X., & Hui, Y. (2010). Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear, 269(11-12), 699-708.
  • Yu, C., Wan, H., Chen, L., Li, H., Cui, H., Ju, P., ... & Chen, J. (2018). Marvelous abilities for polyhedral oligomeric silsesquioxane to improve tribological properties of polyamide-imide/polytetrafluoroethylene coatings. Journal of Materials Science, 53(17), 12616-12627.
  • Zhao, Z., Ma, Y., Wan, H., Ye, Y., Chen, L., Zhou, H., & Chen, J. (2021). Preparation and tribological behaviors of polyamide-imide/polytetrafluoroethylene lubricating coatings reinforced by in-situ synthesized CeO2 nanoparticles. Polymer Testing, 96, 107100.
  • Zia, K. M., Bhatti, H. N., & Bhatti, I. A. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers, 67(8), 675-692.

The Effect of Sliding Speed on the Tribological Properties of Graphite and Poly-tetra-Fluoro-ethylene Filled Polyamide-imide Polymer Composite

Year 2023, Volume: 13 Issue: 3, 2120 - 2129, 01.09.2023
https://doi.org/10.21597/jist.1220136

Abstract

In recent years, many different polymer and/or polymer-based composite materials have been used in industrial areas such as machinery, food, textile and aircraft/space industries as machine elements, in bearing cages, felt, gasket and gears. One of these materials is graphite and poly-tetra-fluoro-ethylene (PTFE) filled polyamide-imide (PAI) polymer composite. It can be an alternative to traditional materials such as polyamide, poly-oxy-methylene, poly-ether-ether-ketone with its low expansion coefficient, high strength, high thermal resistance such as 275oC and chemical resistance. In this study, the wear and friction behavior of graphite and poly-tetra-fluorine-ethylene (PTFE) filled polyamide-imide composite were investigated. Wear and friction tests were carried out on a pin-disc tester. The experiments were carried out under constant pressure of 1.06 MPa and at four different speeds (1.0, 2.0, 3.0 and 4.0 m/s). As a result of the experiments, the wear rate, friction coefficient, pin and steel disc surface temperature of the graphite and PTFE filled PAI composite (PAI-Graphite/PTFE) were determined. With increasing sliding speed, the specific wear rate of the composite increased while the friction coefficient decreased. In addition, the composite pin and steel disc surface temperatures increased up to about 46.8 oC. The lowest wear rate of the composite was determined as 2.69x10-15 m2/N, while the highest wear rate was determined as 9.2x10-15 m2/N. The friction coefficient of the PAI-based composite was determined as the lowest 0.31 and the highest 0.36. In addition, the wear surfaces of the composite were examined by optical and scanning electron microscopy (SEM).

Project Number

008-2020

References

  • Akıncı, A., Akbulut, H., & Yılmaz, F. (2003). Floropolimer (Teflon) kaplamaların yapı ve özellikleri. UCTEA J. Chamb. Metall. Mater. Eng, 133, 53-59.
  • Bozan, U., Altuncu, E., & Üstel, F. (2014). Nano partikül takviyeli teflon kaplamaların üretilmesi ve karakterizasyonu. Sakarya University Journal of Science, 18(1), 21-30.
  • Cao, H., Dong, X., Qu, D., Dong, C., Zhao, C., Sun, D. & Wu, B. (2022). Transfer film growth of continuous carbon fiber reinforced thermoplastic poly (ether ether ketone) facilitated by surface texture during dry sliding. Journal of Materials Science, 57(1), 383-397.
  • Çuhadaroğlu, A. D., & Erdal, K. A. R. A. (2018). Grafit: Bir genel değerlendirme. Teknik Bilimler Dergisi, 8(1), 14-33.
  • Gao, Q., Jin, S., Guo, C., Zhang, R., & Jin, M. (2015). Effects of heat-treatment temperature and binder content on the microstructure and thermal conductivity of graphite flake-carbon composites. Fullerenes, Nanotubes and Carbon Nanostructures, 23(12), 1043-1050.
  • Helmroth, E., Rijk, R., Dekker, M., & Jongen, W. (2002). Predictive modelling of migration from packaging materials into food products for regulatory purposes. Trends in Food Science & Technology, 13(3), 102-109.
  • Kamga, L. S., Nguyen, T. D., Emrich, S., Oehler, M., Schmidt, T., Gedan-Smolka, M. & Sauer, B. (2022). The effect of irradiated PTFE on the friction and wear behavior of chemically bonded PA46-PTFE-cb and PA66-PTFE-cb compounds. Wear, 204380.
  • Kaya, F. (2005). Ana hatlarıyla plastikler ve katkı maddeleri. Birsen yayınevi.
  • Kurt, M. (2011). Yüksek performanslı endüstriyel termoplastiklerin yüksek sıcaklıklardaki tribolojik davranışları.
  • Lee, S. M., Lee, S. H., Kang, D. S., & Roh, J. S. (2021). A Study on the Possibility of Bulk Graphite Manufacturing using Coal Tar as a Binder and an Impregnant. Composites Research, 34(1), 51-56.
  • Li, B., Wan, H., Ye, Y., Chen, L., Zhou, H., & Chen, J. (2017). Investigating the effect of LaF3 on the tribological performances of an environment friendly hydrophilic polyamide imide resin bonded solid lubricating coating. Tribology International, 116, 164-171.
  • Liu, Z., Guo, Q., Shi, J., Zhai, G., & Liu, L. (2008). Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon, 46(3), 414-421.
  • McKeen, L. W. (2006). 4-Binders. Fluorinated Coatings and Finishes Handbook; McKeen, LW, Ed.; William Andrew Publishing: Norwich, NY, USA, 45-58.
  • Pleskachevsky, Y. M., & Smurugov, V. A. (1997). Thermal fluctuations at PTFE friction and transfer. Wear, 209(1-2), 123-127.
  • Samyn, P., De Baets, P., Schoukens, G., & Van Driessche, I. (2007). Friction, wear and transfer of pure and internally lubricated cast polyamides at various testing scales. Wear, 262(11-12), 1433-1449.
  • Sheiretov, T., Van Glabbeek, W., & Cusano, C. (1995). Evaluation of the tribological properties of polyimide and poly (amide-imide) polymers in a refrigerant environment. Tribology transactions, 38(4), 914-922.
  • Topcu, İ. & Karaman, E. (2019). Çok Duvarlı Karbon Nanotüp Takviyeli Düzenli/ Düzensiz Şekilli Ti-6Al-4V Kompozitlerin Aşınma Davranışlarının İncelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi , 7 (3) , 1249-1260.
  • Ünal, H., & Findik, F. (2008). Friction and wear behaviours of some industrial polyamides against different polymer counterparts under dry conditions. Industrial Lubrication and Tribology, 60(4), 195-200.
  • Ünal, H., & Yetgin, S. H. (2021). Rulmanlı Yatak Uygulamaları İçin Grafit Katkılı PTFE ve PTFE Katkılı Poliamit-6 Polimerlerinin Aşınma ve Sürtünme Performanslarının Karşılaştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 335-344.
  • Ünal, H., Kurt, M., & Mimaroglu, A. (2012). Tribological performance of industrial polyamide-imide and its composite under different cooling conditions.
  • Ünal, H., Mimaroglu, A., & Demir, Z. (2010). Tribological performance of POM, PTFE and PSU composites used in electrical engineering applications. International Journal of Polymeric Materials, 59(10), 808-817.
  • Wang, Z., & Gao, D. (2013). Comparative investigation on the tribological behavior of reinforced plastic composite under natural seawater lubrication. Materials & Design, 51, 983-988.
  • Yingfei, G., Jiuhua, X., & Hui, Y. (2010). Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear, 269(11-12), 699-708.
  • Yu, C., Wan, H., Chen, L., Li, H., Cui, H., Ju, P., ... & Chen, J. (2018). Marvelous abilities for polyhedral oligomeric silsesquioxane to improve tribological properties of polyamide-imide/polytetrafluoroethylene coatings. Journal of Materials Science, 53(17), 12616-12627.
  • Zhao, Z., Ma, Y., Wan, H., Ye, Y., Chen, L., Zhou, H., & Chen, J. (2021). Preparation and tribological behaviors of polyamide-imide/polytetrafluoroethylene lubricating coatings reinforced by in-situ synthesized CeO2 nanoparticles. Polymer Testing, 96, 107100.
  • Zia, K. M., Bhatti, H. N., & Bhatti, I. A. (2007). Methods for polyurethane and polyurethane composites, recycling and recovery: A review. Reactive and functional polymers, 67(8), 675-692.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Metallurgical and Materials
Authors

Ahmet Maslavi 0000-0002-9571-0640

Hüseyin Ünal 0000-0003-0521-6647

Alim Kaştan 0000-0002-6514-3796

Project Number 008-2020
Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date December 19, 2022
Acceptance Date April 20, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Maslavi, A., Ünal, H., & Kaştan, A. (2023). Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi. Journal of the Institute of Science and Technology, 13(3), 2120-2129. https://doi.org/10.21597/jist.1220136
AMA Maslavi A, Ünal H, Kaştan A. Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi. J. Inst. Sci. and Tech. September 2023;13(3):2120-2129. doi:10.21597/jist.1220136
Chicago Maslavi, Ahmet, Hüseyin Ünal, and Alim Kaştan. “Grafit Ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-Imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 2120-29. https://doi.org/10.21597/jist.1220136.
EndNote Maslavi A, Ünal H, Kaştan A (September 1, 2023) Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi. Journal of the Institute of Science and Technology 13 3 2120–2129.
IEEE A. Maslavi, H. Ünal, and A. Kaştan, “Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 2120–2129, 2023, doi: 10.21597/jist.1220136.
ISNAD Maslavi, Ahmet et al. “Grafit Ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-Imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi”. Journal of the Institute of Science and Technology 13/3 (September 2023), 2120-2129. https://doi.org/10.21597/jist.1220136.
JAMA Maslavi A, Ünal H, Kaştan A. Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi. J. Inst. Sci. and Tech. 2023;13:2120–2129.
MLA Maslavi, Ahmet et al. “Grafit Ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-Imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 2120-9, doi:10.21597/jist.1220136.
Vancouver Maslavi A, Ünal H, Kaştan A. Grafit ve Poli-Tetra-Flor-Etilen Katkılı Poliamid-imid Polimer Kompozitin Tribolojik Performansına Kayma Hızının Etkisi. J. Inst. Sci. and Tech. 2023;13(3):2120-9.