Research Article
BibTex RIS Cite

Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries

Year 2023, Volume: 13 Issue: 3, 1804 - 1813, 01.09.2023
https://doi.org/10.21597/jist.1264079

Abstract

Tin (Sn) is an emerging anode candidate for Li-ion batteries. Due to its high availability and low cost, researchers are studying Sn anode as a next-generation anode alternative for Li-ion batteries (LIB). In this study, we have investigated the electroplated Sn anode obtained from the aqueous media. We have utilized the electrodeposition method for synthesizing pure tin anode on the copper current collector. Aqueous media comprised of tin salt, surface activator, adhesive agent, buffering, and the complexing agent was utilized for obtaining pure tin without using any binder and a conductive agent. Deposition potentials and their effect on the particle morphology and crystal structure were investigated. To enhance the electrochemical performance, we coated the tin anode with the conducting polymer coating and further analyzed the effect of the heat treatment on the polymer-coated tin anodes. The electrochemical performance and physicochemical properties of the electrodeposited Sn electrode were characterized by, Scanning electron microscopy, X-ray Diffraction, and electrochemical techniques. As the voltage of the coating potential increases, it has been observed that the tin particles further enlarge. No difference is observed in X-ray diffraction results for the tin electrodes obtained at different voltages. Coating voltage values of -0.8V and -0.9V have provided ideal electrochemical results. Although polymer coating has a positive effect on the initial capacity value, it has been observed that it does not have sufficient improvement in cycle life.

Supporting Institution

TÜBİTAK

Project Number

118C307

Thanks

MNA is also indebted to TÜBİTAK for providing the grant of 2232-International Fellowship for Outstanding Researchers Programme (project no. 118C307).

References

  • Abd El Rehim, S., Sayyah, S., & El Deeb, M. (2000). Electroplating of tin from acidic gluconate baths. PLATING & SURFACE FINISHING.
  • Ashworth, M. A., Wilcox, G. D., Higginson, R. L., Heath, R. J., Liu, C., & Mortimer, R. J. (2015). The effect of electroplating parameters and substrate material on tin whisker formation. Microelectronics Reliability, 55(1), 180-191. doi:https://doi.org/10.1016/j.microrel.2014.10.005
  • Ates, M. N., & Busbee, J. (2017). Electrodeposition of Metal Oxide Nanoparticles for Li-Ion Battery Anodes. ECS Meeting Abstracts, MA2017-02(4), 415. doi:10.1149/MA2017-02/4/415
  • Derrien, G., Hassoun, J., Panero, S., & Scrosati, B. (2007). Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. 19(17), 2336-2340. doi:https://doi.org/10.1002/adma.200700748
  • Dirican, M., Yanilmaz, M., Fu, K., Lu, Y., Kizil, H., & Zhang, X. (2014). Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources, 264, 240-247. doi:https://doi.org/10.1016/j.jpowsour.2014.04.102
  • Han, C., Liu, Q., & Ivey, D. G. (2009). Nucleation of Sn and Sn–Cu alloys on Pt during electrodeposition from Sn–citrate and Sn–Cu–citrate solutions. Electrochimica Acta, 54(12), 3419-3427. doi:https://doi.org/10.1016/j.electacta.2008.12.064
  • He, A., Liu, Q., & Ivey, D. G. (2008). Electrodeposition of tin: a simple approach. Journal of Materials Science: Materials in Electronics, 19(6), 553-562. doi:10.1007/s10854-007-9385-3
  • Huang, X., Chen, Y., Fu, T., Zhang, Z., & Zhang, J. (2013). Study of Tin Electroplating Process Using Electrochemical Impedance and Noise Techniques. Journal of the Electrochemical Society, 160(11), D530. doi:10.1149/2.055311jes
  • Kong, Z., Zhang, K., Huang, M., Tu, H., Yao, X., Shao, Y., Hao, X. (2022). Stabilizing Sn anodes nanostructure: Structure optimization and interfacial engineering to boost lithium storage. Electrochimica Acta, 405, 139789. doi:https://doi.org/10.1016/j.electacta.2021.139789
  • Lee, J.-Y., Kim, J.-W., Chang, B.-Y., Tae Kim, H., & Park, S.-M. (2004). Effects of Ethoxylated α-Naphtholsulfonic Acid on Tin Electroplating at Iron Electrodes. Journal of the Electrochemical Society, 151(5), C333. doi:10.1149/1.1690289
  • Mao, O., Dunlap, R. A., & Dahn, J. R. (1999). Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐  C  System. Journal of the Electrochemical Society, 146(2), 405. doi:10.1149/1.1391622
  • Obrovac, M. N., & Chevrier, V. L. (2014). Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews, 114(23), 11444-11502. doi:10.1021/cr500207g
  • Sohel, I. H., Öztürk, T., Aydemir, U., Peighambardoust, N. S., Duygulu, Ö., Işık-Gülsaç, I., Ateş, M. N. (2022). Deciphering the effect of the heat treatment on the electrodeposited silicon anode for Li-ion batteries. Journal of Energy Storage, 55, 105817. doi:https://doi.org/10.1016/j.est.2022.105817
  • Tirado, J. L. (2003). Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Materials Science and Engineering: R: Reports, 40(3), 103-136. doi:https://doi.org/10.1016/S0927-796X(02)00125-0
  • Torrent-Burgués, J., Guaus, E., & Sanz, F. (2002). Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate. Journal of Applied Electrochemistry, 32(2), 225-230. doi:10.1023/A:1014710500122
  • Ui, K., Kikuchi, S., Kadoma, Y., Kumagai, N., & Ito, S. (2009). Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries. Journal of Power Sources, 189(1), 224-229. doi:https://doi.org/10.1016/j.jpowsour.2008.09.081
  • Walsh, F. C., & Low, C. T. J. (2016). A review of developments in the electrodeposition of tin. Surface and Coatings Technology, 288, 79-94. doi:https://doi.org/10.1016/j.surfcoat.2015.12.081
  • Wang, B., Luo, B., Li, X., & Zhi, L. (2012). The dimensionality of Sn anodes in Li-ion batteries. Materials Today, 15(12), 544-552. doi:https://doi.org/10.1016/S1369-7021(13)70012-9
  • Wu, M., Wang, C., Chen, J., Wang, F., & Yi, B. (2013). Sn/carbon nanotube composite anode with improved cycle performance for lithium-ion battery. Ionics, 19(10), 1341-1347. doi:10.1007/s11581-013-0870-9
  • Yue, X., Johnson, A. C., Kim, S., Kohlmeyer, R. R., Patra, A., Grzyb, J., Pikul, J. H. (2021). A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries. 33(35), 2101760. doi:https://doi.org/10.1002/adma.202101760
  • Zhang, Y., & Abys, J. A. (1999). A unique electroplating tin chemistry. Circuit World, 25(1), 30-37. doi:10.1108/03056129910244815
  • Zheng, Z., Chen, B., Xu, Y., Fritz, N., Gurumukhi, Y., Cook, J., Wang, P. (2020). A Gaussian Process-Based Crack Pattern Modeling Approach for Battery Anode Materials Design. Journal of Electrochemical Energy Conversion and Storage, 18(1). doi:10.1115/1.4046938

Elektro Kaplama Yöntemi ile Elde Edilen Kalay Anodunun Lityum İyon Pillerde Performansının İncelenmesi

Year 2023, Volume: 13 Issue: 3, 1804 - 1813, 01.09.2023
https://doi.org/10.21597/jist.1264079

Abstract

Kalay (Sn), Li-ion piller için gelişmekte olan alternatif bir anot adayıdır. Bolca bulunması ve düşük maliyeti nedeniyle araştırmacılar, Li-ion piller (LIP) için yeni nesil bir anot alternatifi olarak Sn anot üzerinde çalışmaktadırlar. Bu çalışmada sulu ortamdan elde edilen elektrolizle kaplanmış Sn anodunu inceledik. Bakır akım toplayıcı üzerinde saf kalay anot sentezlemek için elektro kaplama yöntemini kullandık. Kalay tuzu, yüzey aktivatörü, yapıştırıcı ajan, tamponlama ve kompleks yapıcıdan oluşan sulu ortam, herhangi bir bağlayıcı ve iletken ajan kullanılmadan saf kalay elde etmek için kullanılmıştır. Biriktirme potansiyelleri ve bunların partikül morfolojisi ve kristal yapısı üzerindeki etkileri araştırıldı. Elektrokimyasal performansı arttırmak için kalay anodu iletken polimer kaplama ile kapladık ve ısıl işlemin polimer kaplı kalay anotlar üzerindeki etkisini inceledik. Elektro kaplama ile Sn elektrodun elektrokimyasal performansı ve fiziko kimyasal özellikleri, Taramalı elektron mikroskobu, X-ışını Kırınımı ve elektrokimyasal tekniklerle karakterize edildi. Kaplama potansiyelinin voltajı arttırıldıkça kalay parçacıklarının daha da büyüdüğü gözlemlenmiştir. X-ışını kırınımı sonuçlarında farklılık gözükmemiştir. -0.8V ve -0.9V kaplama voltaj değerleri ideal elektrokimyasal sonuçları vermiştir. Polimer kaplamanın ilk kapasite değerine olumlu etkisi olsa da döngü ömründe yeteri iyileştirme oluşturmadığı gözlemlenmiştir.

Project Number

118C307

References

  • Abd El Rehim, S., Sayyah, S., & El Deeb, M. (2000). Electroplating of tin from acidic gluconate baths. PLATING & SURFACE FINISHING.
  • Ashworth, M. A., Wilcox, G. D., Higginson, R. L., Heath, R. J., Liu, C., & Mortimer, R. J. (2015). The effect of electroplating parameters and substrate material on tin whisker formation. Microelectronics Reliability, 55(1), 180-191. doi:https://doi.org/10.1016/j.microrel.2014.10.005
  • Ates, M. N., & Busbee, J. (2017). Electrodeposition of Metal Oxide Nanoparticles for Li-Ion Battery Anodes. ECS Meeting Abstracts, MA2017-02(4), 415. doi:10.1149/MA2017-02/4/415
  • Derrien, G., Hassoun, J., Panero, S., & Scrosati, B. (2007). Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. 19(17), 2336-2340. doi:https://doi.org/10.1002/adma.200700748
  • Dirican, M., Yanilmaz, M., Fu, K., Lu, Y., Kizil, H., & Zhang, X. (2014). Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources, 264, 240-247. doi:https://doi.org/10.1016/j.jpowsour.2014.04.102
  • Han, C., Liu, Q., & Ivey, D. G. (2009). Nucleation of Sn and Sn–Cu alloys on Pt during electrodeposition from Sn–citrate and Sn–Cu–citrate solutions. Electrochimica Acta, 54(12), 3419-3427. doi:https://doi.org/10.1016/j.electacta.2008.12.064
  • He, A., Liu, Q., & Ivey, D. G. (2008). Electrodeposition of tin: a simple approach. Journal of Materials Science: Materials in Electronics, 19(6), 553-562. doi:10.1007/s10854-007-9385-3
  • Huang, X., Chen, Y., Fu, T., Zhang, Z., & Zhang, J. (2013). Study of Tin Electroplating Process Using Electrochemical Impedance and Noise Techniques. Journal of the Electrochemical Society, 160(11), D530. doi:10.1149/2.055311jes
  • Kong, Z., Zhang, K., Huang, M., Tu, H., Yao, X., Shao, Y., Hao, X. (2022). Stabilizing Sn anodes nanostructure: Structure optimization and interfacial engineering to boost lithium storage. Electrochimica Acta, 405, 139789. doi:https://doi.org/10.1016/j.electacta.2021.139789
  • Lee, J.-Y., Kim, J.-W., Chang, B.-Y., Tae Kim, H., & Park, S.-M. (2004). Effects of Ethoxylated α-Naphtholsulfonic Acid on Tin Electroplating at Iron Electrodes. Journal of the Electrochemical Society, 151(5), C333. doi:10.1149/1.1690289
  • Mao, O., Dunlap, R. A., & Dahn, J. R. (1999). Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐  C  System. Journal of the Electrochemical Society, 146(2), 405. doi:10.1149/1.1391622
  • Obrovac, M. N., & Chevrier, V. L. (2014). Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews, 114(23), 11444-11502. doi:10.1021/cr500207g
  • Sohel, I. H., Öztürk, T., Aydemir, U., Peighambardoust, N. S., Duygulu, Ö., Işık-Gülsaç, I., Ateş, M. N. (2022). Deciphering the effect of the heat treatment on the electrodeposited silicon anode for Li-ion batteries. Journal of Energy Storage, 55, 105817. doi:https://doi.org/10.1016/j.est.2022.105817
  • Tirado, J. L. (2003). Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Materials Science and Engineering: R: Reports, 40(3), 103-136. doi:https://doi.org/10.1016/S0927-796X(02)00125-0
  • Torrent-Burgués, J., Guaus, E., & Sanz, F. (2002). Initial stages of tin electrodeposition from sulfate baths in the presence of gluconate. Journal of Applied Electrochemistry, 32(2), 225-230. doi:10.1023/A:1014710500122
  • Ui, K., Kikuchi, S., Kadoma, Y., Kumagai, N., & Ito, S. (2009). Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries. Journal of Power Sources, 189(1), 224-229. doi:https://doi.org/10.1016/j.jpowsour.2008.09.081
  • Walsh, F. C., & Low, C. T. J. (2016). A review of developments in the electrodeposition of tin. Surface and Coatings Technology, 288, 79-94. doi:https://doi.org/10.1016/j.surfcoat.2015.12.081
  • Wang, B., Luo, B., Li, X., & Zhi, L. (2012). The dimensionality of Sn anodes in Li-ion batteries. Materials Today, 15(12), 544-552. doi:https://doi.org/10.1016/S1369-7021(13)70012-9
  • Wu, M., Wang, C., Chen, J., Wang, F., & Yi, B. (2013). Sn/carbon nanotube composite anode with improved cycle performance for lithium-ion battery. Ionics, 19(10), 1341-1347. doi:10.1007/s11581-013-0870-9
  • Yue, X., Johnson, A. C., Kim, S., Kohlmeyer, R. R., Patra, A., Grzyb, J., Pikul, J. H. (2021). A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries. 33(35), 2101760. doi:https://doi.org/10.1002/adma.202101760
  • Zhang, Y., & Abys, J. A. (1999). A unique electroplating tin chemistry. Circuit World, 25(1), 30-37. doi:10.1108/03056129910244815
  • Zheng, Z., Chen, B., Xu, Y., Fritz, N., Gurumukhi, Y., Cook, J., Wang, P. (2020). A Gaussian Process-Based Crack Pattern Modeling Approach for Battery Anode Materials Design. Journal of Electrochemical Energy Conversion and Storage, 18(1). doi:10.1115/1.4046938
There are 22 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Mehmet Nurullah Ateş 0000-0002-3557-6769

Project Number 118C307
Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date March 12, 2023
Acceptance Date May 27, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Ateş, M. N. (2023). Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries. Journal of the Institute of Science and Technology, 13(3), 1804-1813. https://doi.org/10.21597/jist.1264079
AMA Ateş MN. Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries. J. Inst. Sci. and Tech. September 2023;13(3):1804-1813. doi:10.21597/jist.1264079
Chicago Ateş, Mehmet Nurullah. “Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1804-13. https://doi.org/10.21597/jist.1264079.
EndNote Ateş MN (September 1, 2023) Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries. Journal of the Institute of Science and Technology 13 3 1804–1813.
IEEE M. N. Ateş, “Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1804–1813, 2023, doi: 10.21597/jist.1264079.
ISNAD Ateş, Mehmet Nurullah. “Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1804-1813. https://doi.org/10.21597/jist.1264079.
JAMA Ateş MN. Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries. J. Inst. Sci. and Tech. 2023;13:1804–1813.
MLA Ateş, Mehmet Nurullah. “Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1804-13, doi:10.21597/jist.1264079.
Vancouver Ateş MN. Understanding the Effect of Deposition Potential on the Electrodeposited Tin Anodes for Lithium-Ion Batteries. J. Inst. Sci. and Tech. 2023;13(3):1804-13.