Research Article
BibTex RIS Cite

Effect of Red Cabbage Extract on Characteristic Properties of Chitosan-Starch Films

Year 2024, Volume: 14 Issue: 2, 732 - 742, 01.06.2024
https://doi.org/10.21597/jist.1356420

Abstract

In this study, red cabbage extract (5, 10 and 15% v/v) added chitosan and starch films were prepared and the physical properties of the films such as thickness, density, water solubility and swelling, water vapor permeability, opacity and mechanical (tensile strength and maximum elongation at break) properties were characterized. In addition, total phenolic and monomeric anthocyanin contents of the films and phenolic releases at different pH for 48 hours were investigated. With the increase in the amount of red cabbage extract, the thickness and water solubility values of the films increased, while the swelling values decreased (p<0.05). Water vapor permeability properties were not affected by the addition of extract (p>0.05). More opaque films were obtained by increasing the amount of extract (p<0.05). While the maximum elongation at break decreased in films containing 10-15% extract (p<0.05), no change was observed in tensile strength (p>0.05). It was observed that there was phenolic release in the films with 10-15% extract in the acidic environment.

References

  • Ahmadiani, N., Robbins, R. J., Collins, T. M., & Giusti, M. M. (2014). Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. Journal of Agricultural and Food Chemistry, 62(30), 7524-7531.
  • ASTM (2012). Standard test method for tensile properties of thin plastic sheeting - D882-12. West Conshohocken, PA: ASTM, Annual Book of American Standard Testing Methods.
  • ASTM (2015). Standard test method for transparency of plastic sheeting - D1746-15. West Conshohocken, PA: ASTM, Annual Book of American Standard Testing Methods.
  • ASTM (2015a). Standard test method for water vapor transmission of materials - E96/E96M- 15. West Conshohocken, PA: ASTM, Annual Book of American Standard Testing Methods.
  • Bilgiç, S., Söğüt, E., & Seydim, A. C. (2019). Chitosan and starch based intelligent films with anthocyanins from eggplant to monitor pH variations. Turkish Journal of Agriculture-Food Science and Technology, 7, 61-66.
  • Cao, N., Fu, Y., & He, J. (2007). Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids, 21(7), 1153-1162.
  • Gomaa, M., Hifney, A. F., Fawzy, M. A., & Abdel-Gawad, K. M. (2018). Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocolloids, 82, 239-247.
  • Gutiérrez, T. J., Ponce, A. G., & Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283-292.
  • Haghighi, H., Licciardello, F., Fava, P., Siesler, H. W., & Pulvirenti, A. (2020). Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life, 26, 100551.
  • Halloub, A., Raji, M., Essabir, H., Nekhlaoui, S., Bensalah, M. O., & Bouhfid, R. (2023). Stable smart packaging betalain-based from red prickly pear covalently linked into cellulose/alginate blend films. International Journal of Biological Macromolecules, 234, 123764.
  • Izzo, L., Rodríguez-Carrasco, Y., Pacifico, S., Castaldo, L., Narváez, A., & Ritieni, A. (2020). Colon bioaccessibility under in vitro gastrointestinal digestion of a red cabbage extract chemically profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants, 9(10), 955.
  • Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., ... & Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules, 143, 359-372.
  • Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packaging and Shelf Life, 33, 100892.
  • Kontominas, M. G. (2020). Use of alginates as food packaging materials. Foods, 9(10), 1440.
  • Kumar, S., Mukherjee, A., & Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97, 196-209.
  • Kurtfaki, M., & Yildirim-Yalcin, M. (2023). Characterization of Laurus nobilis L. leaf essential oil incorporated maize starch and rice protein films. Journal of Food Measurement and Characterization, 1-9.
  • Lauer, M. K., & Smith, R. C. (2020). Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3031-3083.
  • Luchese, C. L., Abdalla, V. F., Spada, J. C., & Tessaro, I. C. (2018). Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, 82, 209-218.
  • Maltaş, A. Ş., Tavalı, İ. E., Uz, İ., & Kaplangöray, M. (2017). Kırmızı baş lahana (Brassica oleracea var. capitata f. rubra) yetiştiriciliğinde vermikompost uygulaması. Mediterranean Agricultural Sciences, 30(2), 155-161.
  • Marquez, G. R., Di Pierro, P., Mariniello, L., Esposito, M., Giosafatto, C. V., & Porta, R. (2017). Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT, 75, 124-130.
  • McHugh, T. H., Avena‐Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899-903.
  • Meng, W., Shi, J., Zhang, X., Lian, H., Wang, Q., & Peng, Y. (2020). Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films. International Journal of Biological Macromolecules, 152, 137-146.
  • Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules, 121, 889-904.
  • Nguyen, T. T., Dao, U. T. T., Bui, Q. P. T., Bach, G. L., Thuc, C. H., & Thuc, H. H. (2020). Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Progress in Organic Coatings, 140, 105487.
  • Nguyen, T. T., Pham, B. T. T., Le, H. N., Bach, L. G., & Thuc, C. H. (2022). Comparative characterization and release study of edible films of chitosan and natural extracts. Food Packaging and Shelf Life, 32, 100830.
  • Park, S. I., & Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of Agricultural and Food Chemistry, 52(7), 1933-1939.
  • da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2020). Development of biodegradable films with improved antioxidant properties based on the addition of carrageenan containing olive leaf extract for food packaging applications. Journal of Polymers and the Environment, 28, 123-130.
  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775.
  • Talón, E., Trifkovic, K. T., Vargas, M., Chiralt, A., & González-Martínez, C. (2017a). Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydrate Polymers, 175, 122-130.
  • Talón, E., Trifkovic, K. T., Nedovic, V. A., Bugarski, B. M., Vargas, M., Chiralt, A., & González-Martínez, C. (2017b). Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers, 157, 1153-1161.
  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35-41.
  • Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550.
  • Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chemistry, 272, 306-312.

Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi

Year 2024, Volume: 14 Issue: 2, 732 - 742, 01.06.2024
https://doi.org/10.21597/jist.1356420

Abstract

Bu çalışmada, kırmızı lahana ekstraktı (hacimce %5, 10 ve 15 oranlarında) eklenmiş kitosan ve nişasta filmler hazırlanarak filmlerin kalınlık, yoğunluk, suda çözünürlük ve şişme gibi fiziksel özellikleri, su buharı geçirgenliği, opaklık ve mekanik (kopma mukavemeti ve kopma anındaki maksimum uzama) özellikleri karakterize edilmiştir. Ayrıca filmlerin toplam fenolik madde ve monomerik antosiyanin içerikleri ve farklı pH’larda 48 saat boyunca fenolik salımları incelenmiştir. Kırmızı lahana eksrakt miktarının artmasıyla filmlerin kalınlık ve suda çözünürlük değerleri artarken, suda şişme değerleri azalmıştır (p<0.05). Su buharı geçirgenlik özellikleri ekstrakt ilavesinden etkilenmemiştir (p>0.05). Ekstrakt miktarının artmasıyla daha opak filmler elde edilmiştir (p<0.05). Kopma anındaki maksimum uzama miktarı %10-15 ekstrakt içeren filmlerde azalırken (p<0.05) kopma mukavemetinde değişiklik gözlenmemiştir (p>0.05). Ekstrakt miktarı %10-15 olan filmlerde asidik ortamda fenolik madde salımı olduğu görülmüştür.

References

  • Ahmadiani, N., Robbins, R. J., Collins, T. M., & Giusti, M. M. (2014). Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. Journal of Agricultural and Food Chemistry, 62(30), 7524-7531.
  • ASTM (2012). Standard test method for tensile properties of thin plastic sheeting - D882-12. West Conshohocken, PA: ASTM, Annual Book of American Standard Testing Methods.
  • ASTM (2015). Standard test method for transparency of plastic sheeting - D1746-15. West Conshohocken, PA: ASTM, Annual Book of American Standard Testing Methods.
  • ASTM (2015a). Standard test method for water vapor transmission of materials - E96/E96M- 15. West Conshohocken, PA: ASTM, Annual Book of American Standard Testing Methods.
  • Bilgiç, S., Söğüt, E., & Seydim, A. C. (2019). Chitosan and starch based intelligent films with anthocyanins from eggplant to monitor pH variations. Turkish Journal of Agriculture-Food Science and Technology, 7, 61-66.
  • Cao, N., Fu, Y., & He, J. (2007). Preparation and physical properties of soy protein isolate and gelatin composite films. Food Hydrocolloids, 21(7), 1153-1162.
  • Gomaa, M., Hifney, A. F., Fawzy, M. A., & Abdel-Gawad, K. M. (2018). Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocolloids, 82, 239-247.
  • Gutiérrez, T. J., Ponce, A. G., & Alvarez, V. A. (2017). Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Materials Chemistry and Physics, 194, 283-292.
  • Haghighi, H., Licciardello, F., Fava, P., Siesler, H. W., & Pulvirenti, A. (2020). Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life, 26, 100551.
  • Halloub, A., Raji, M., Essabir, H., Nekhlaoui, S., Bensalah, M. O., & Bouhfid, R. (2023). Stable smart packaging betalain-based from red prickly pear covalently linked into cellulose/alginate blend films. International Journal of Biological Macromolecules, 234, 123764.
  • Izzo, L., Rodríguez-Carrasco, Y., Pacifico, S., Castaldo, L., Narváez, A., & Ritieni, A. (2020). Colon bioaccessibility under in vitro gastrointestinal digestion of a red cabbage extract chemically profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants, 9(10), 955.
  • Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., ... & Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules, 143, 359-372.
  • Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packaging and Shelf Life, 33, 100892.
  • Kontominas, M. G. (2020). Use of alginates as food packaging materials. Foods, 9(10), 1440.
  • Kumar, S., Mukherjee, A., & Dutta, J. (2020). Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology, 97, 196-209.
  • Kurtfaki, M., & Yildirim-Yalcin, M. (2023). Characterization of Laurus nobilis L. leaf essential oil incorporated maize starch and rice protein films. Journal of Food Measurement and Characterization, 1-9.
  • Lauer, M. K., & Smith, R. C. (2020). Recent advances in starch‐based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3031-3083.
  • Luchese, C. L., Abdalla, V. F., Spada, J. C., & Tessaro, I. C. (2018). Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, 82, 209-218.
  • Maltaş, A. Ş., Tavalı, İ. E., Uz, İ., & Kaplangöray, M. (2017). Kırmızı baş lahana (Brassica oleracea var. capitata f. rubra) yetiştiriciliğinde vermikompost uygulaması. Mediterranean Agricultural Sciences, 30(2), 155-161.
  • Marquez, G. R., Di Pierro, P., Mariniello, L., Esposito, M., Giosafatto, C. V., & Porta, R. (2017). Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. LWT, 75, 124-130.
  • McHugh, T. H., Avena‐Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899-903.
  • Meng, W., Shi, J., Zhang, X., Lian, H., Wang, Q., & Peng, Y. (2020). Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films. International Journal of Biological Macromolecules, 152, 137-146.
  • Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., & Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules, 121, 889-904.
  • Nguyen, T. T., Dao, U. T. T., Bui, Q. P. T., Bach, G. L., Thuc, C. H., & Thuc, H. H. (2020). Enhanced antimicrobial activities and physiochemical properties of edible film based on chitosan incorporated with Sonneratia caseolaris (L.) Engl. leaf extract. Progress in Organic Coatings, 140, 105487.
  • Nguyen, T. T., Pham, B. T. T., Le, H. N., Bach, L. G., & Thuc, C. H. (2022). Comparative characterization and release study of edible films of chitosan and natural extracts. Food Packaging and Shelf Life, 32, 100830.
  • Park, S. I., & Zhao, Y. (2004). Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of Agricultural and Food Chemistry, 52(7), 1933-1939.
  • da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2020). Development of biodegradable films with improved antioxidant properties based on the addition of carrageenan containing olive leaf extract for food packaging applications. Journal of Polymers and the Environment, 28, 123-130.
  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770-775.
  • Talón, E., Trifkovic, K. T., Vargas, M., Chiralt, A., & González-Martínez, C. (2017a). Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydrate Polymers, 175, 122-130.
  • Talón, E., Trifkovic, K. T., Nedovic, V. A., Bugarski, B. M., Vargas, M., Chiralt, A., & González-Martínez, C. (2017b). Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers, 157, 1153-1161.
  • Wang, L., Dong, Y., Men, H., Tong, J., & Zhou, J. (2013). Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids, 32(1), 35-41.
  • Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550.
  • Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chemistry, 272, 306-312.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Meral Yıldırım Yalçın 0000-0002-5885-8849

Early Pub Date May 28, 2024
Publication Date June 1, 2024
Submission Date September 7, 2023
Acceptance Date January 5, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Yıldırım Yalçın, M. (2024). Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi. Journal of the Institute of Science and Technology, 14(2), 732-742. https://doi.org/10.21597/jist.1356420
AMA Yıldırım Yalçın M. Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi. J. Inst. Sci. and Tech. June 2024;14(2):732-742. doi:10.21597/jist.1356420
Chicago Yıldırım Yalçın, Meral. “Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi”. Journal of the Institute of Science and Technology 14, no. 2 (June 2024): 732-42. https://doi.org/10.21597/jist.1356420.
EndNote Yıldırım Yalçın M (June 1, 2024) Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi. Journal of the Institute of Science and Technology 14 2 732–742.
IEEE M. Yıldırım Yalçın, “Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi”, J. Inst. Sci. and Tech., vol. 14, no. 2, pp. 732–742, 2024, doi: 10.21597/jist.1356420.
ISNAD Yıldırım Yalçın, Meral. “Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi”. Journal of the Institute of Science and Technology 14/2 (June 2024), 732-742. https://doi.org/10.21597/jist.1356420.
JAMA Yıldırım Yalçın M. Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi. J. Inst. Sci. and Tech. 2024;14:732–742.
MLA Yıldırım Yalçın, Meral. “Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi”. Journal of the Institute of Science and Technology, vol. 14, no. 2, 2024, pp. 732-4, doi:10.21597/jist.1356420.
Vancouver Yıldırım Yalçın M. Kırmızı Lahana Ekstraktının Kitosan-Nişasta Filmlerin Karakteristik Özellikleri Üzerine Etkisi. J. Inst. Sci. and Tech. 2024;14(2):732-4.