Research Article
BibTex RIS Cite

Antimicrobial Effect of Drinkable Lugol Solution

Year 2024, Volume: 14 Issue: 4, 1432 - 1437, 01.12.2024
https://doi.org/10.21597/jist.1521217

Abstract

The death rates due to infection in patients receiving long-term antibiotic treatment and hospitalized patients are quite alarming. Treatment of multidrug-resistant strains of Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, which cause widespread nosocomial infection, has become a global problem. Alternative treatment methods are needed for these species, which use all their resistance mechanisms day by day. Recently, it has been seen that iodine (lugol) solution has been used in the treatment of many infections. Significant results are observed, especially for nosocomial and wound infections. The literature on the antimicrobial effect of Lugol solution is very limited. In order to scientifically support such treatments, we aimed to investigate the antimicrobial effect of lugol on resistant bacteria in a laboratory environment. In our laboratory, we have previously isolated Acinetobacter baumannii, Shigella sonneii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains with known antibiotic resistance. For these isolates, the agar dilution method prepared with different concentrations of lugol and the Broth Microdilution Method were used. As a result of our study, it was observed that drinkable Lugol solution affects multidrug-resistant microorganisms at very low concentrations. Thus, Lugol's success in infection treatments will be scientifically supported.

Ethical Statement

Ethics Committee Approval was received for the bacteria included in this article with the decision of the "Iğdır University Non-invasive Clinical Research Ethics Committee" Date: 14.09.2023 Meeting No. 2023-1, Decision No: 2023-1.

Supporting Institution

TÜBİTAK

Project Number

1919B01221922

Thanks

We thank TÜBİTAK for supporting the study.

References

  • Akatsu, S., & Noguchi, H. (1917). The drug-fastness of spirochetes to arsenic, mercurial, and iodide compounds in vitro. The Journal of Experimental Medicine, 25(3), 349-362.
  • Akbulut, E. (2023). İntravitreal enjeksiyon yapılan hastalarda tekrarlayan povidon iyot uygulamasının inflamatuar ve sitolojik etkisi/Inflammatory and cytological effect of repeated application of povidone iodine in patients undergoing intravitreal injection (Doctoral dissertation).
  • Du, M., Li, F., & Hu, Y. (2023). A Uniform Design Method Can Optimize the Combinatorial Parameters of Antimicrobial Photodynamic Therapy, Including the Concentrations of Methylene Blue and Potassium Iodide, Light Dose, and Methylene Blue’s Incubation Time, to Improve Fungicidal Effects on Candida Species. Microorganisms, 11(10), 2557.
  • Gronseth, T., Ovchinnikov, K. V., Carlsen, H., Benth, J. Š., Diep, D. B., Von Unge, M., & Silvola, J. T. (2023). Lugol's solution and Gentian violet eradicate methicillin‐resistant Staphylococcus aureus biofilm in skin wound infections. International Wound Journal, 20(1), 120-130.
  • Grønseth, T., Vestby, L. K., Nesse, L. L., Thoen, E., Habimana, O., Von Unge, M., & Silvola, J. T. (2017). Lugol's solution eradicates Staphylococcus aureus biofilm in vitro. International Journal of Pediatric Otorhinolaryngology, 103, 58-64.
  • Hendley, J. O., Mika, L. A., & Gwaltney Jr, J. M. (1978). Evaluation of virucidal compounds for inactivation of rhinovirus on hands. Antimicrobial Agents and Chemotherapy, 14(5), 690-694.
  • Ibrahim, S., Al-Saryi, N., Al-Kadmy, I. M. S., & Aziz, S. N. (2021). Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular biology reports, 48(10), 6987–6998. https://doi.org/10.1007/s11033-021-06690-6)
  • Siggia, S. (1957). The chemistry of polyvinylpyrrolidone-iodine. Journal of the American Pharmaceutical Association (Scientific ed.), 46(3), 201-204.
  • Tam, A., Shemesh, M., Wormser, U., Sintov, A., & Steinberg, D. (2006). Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. Journal of Antimicrobial Chemotherapy, 57(5), 865-871.
  • Toledo-Pereyra LH. (2010). Joseph Lister's surgical revolution. J Invest Surg.;23(5):241-243.
  • Tonoyan, L., Boyd, A., Fleming, G. T., Friel, R., Gately, C. M., Mc Cay, P. H., & O'Flaherty, V. (2018). In vitro comparative cytotoxicity study of a novel biocidal iodo-thiocyanate complex. Toxicology in Vitro, 50, 264-273.
  • Zamora, J. L. (1986). Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. The American journal of surgery, 151(3), 400-406.
Year 2024, Volume: 14 Issue: 4, 1432 - 1437, 01.12.2024
https://doi.org/10.21597/jist.1521217

Abstract

Project Number

1919B01221922

References

  • Akatsu, S., & Noguchi, H. (1917). The drug-fastness of spirochetes to arsenic, mercurial, and iodide compounds in vitro. The Journal of Experimental Medicine, 25(3), 349-362.
  • Akbulut, E. (2023). İntravitreal enjeksiyon yapılan hastalarda tekrarlayan povidon iyot uygulamasının inflamatuar ve sitolojik etkisi/Inflammatory and cytological effect of repeated application of povidone iodine in patients undergoing intravitreal injection (Doctoral dissertation).
  • Du, M., Li, F., & Hu, Y. (2023). A Uniform Design Method Can Optimize the Combinatorial Parameters of Antimicrobial Photodynamic Therapy, Including the Concentrations of Methylene Blue and Potassium Iodide, Light Dose, and Methylene Blue’s Incubation Time, to Improve Fungicidal Effects on Candida Species. Microorganisms, 11(10), 2557.
  • Gronseth, T., Ovchinnikov, K. V., Carlsen, H., Benth, J. Š., Diep, D. B., Von Unge, M., & Silvola, J. T. (2023). Lugol's solution and Gentian violet eradicate methicillin‐resistant Staphylococcus aureus biofilm in skin wound infections. International Wound Journal, 20(1), 120-130.
  • Grønseth, T., Vestby, L. K., Nesse, L. L., Thoen, E., Habimana, O., Von Unge, M., & Silvola, J. T. (2017). Lugol's solution eradicates Staphylococcus aureus biofilm in vitro. International Journal of Pediatric Otorhinolaryngology, 103, 58-64.
  • Hendley, J. O., Mika, L. A., & Gwaltney Jr, J. M. (1978). Evaluation of virucidal compounds for inactivation of rhinovirus on hands. Antimicrobial Agents and Chemotherapy, 14(5), 690-694.
  • Ibrahim, S., Al-Saryi, N., Al-Kadmy, I. M. S., & Aziz, S. N. (2021). Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular biology reports, 48(10), 6987–6998. https://doi.org/10.1007/s11033-021-06690-6)
  • Siggia, S. (1957). The chemistry of polyvinylpyrrolidone-iodine. Journal of the American Pharmaceutical Association (Scientific ed.), 46(3), 201-204.
  • Tam, A., Shemesh, M., Wormser, U., Sintov, A., & Steinberg, D. (2006). Effect of different iodine formulations on the expression and activity of Streptococcus mutans glucosyltransferase and fructosyltransferase in biofilm and planktonic environments. Journal of Antimicrobial Chemotherapy, 57(5), 865-871.
  • Toledo-Pereyra LH. (2010). Joseph Lister's surgical revolution. J Invest Surg.;23(5):241-243.
  • Tonoyan, L., Boyd, A., Fleming, G. T., Friel, R., Gately, C. M., Mc Cay, P. H., & O'Flaherty, V. (2018). In vitro comparative cytotoxicity study of a novel biocidal iodo-thiocyanate complex. Toxicology in Vitro, 50, 264-273.
  • Zamora, J. L. (1986). Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. The American journal of surgery, 151(3), 400-406.
There are 12 citations in total.

Details

Primary Language English
Subjects Bacteriology
Journal Section Biyoloji / Biology
Authors

Ayşe Karacalı Tunç 0000-0002-6453-9887

Büşra Merve Sarıtaş 0000-0001-8955-4699

Mahdi Marzi 0000-0002-8518-0818

Feray Şenel Dursun 0000-0003-1206-1380

Şevin Kaya 0009-0001-3570-1304

Project Number 1919B01221922
Publication Date December 1, 2024
Submission Date July 23, 2024
Acceptance Date August 30, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Karacalı Tunç, A., Sarıtaş, B. M., Marzi, M., Şenel Dursun, F., et al. (2024). Antimicrobial Effect of Drinkable Lugol Solution. Journal of the Institute of Science and Technology, 14(4), 1432-1437. https://doi.org/10.21597/jist.1521217
AMA Karacalı Tunç A, Sarıtaş BM, Marzi M, Şenel Dursun F, Kaya Ş. Antimicrobial Effect of Drinkable Lugol Solution. J. Inst. Sci. and Tech. December 2024;14(4):1432-1437. doi:10.21597/jist.1521217
Chicago Karacalı Tunç, Ayşe, Büşra Merve Sarıtaş, Mahdi Marzi, Feray Şenel Dursun, and Şevin Kaya. “Antimicrobial Effect of Drinkable Lugol Solution”. Journal of the Institute of Science and Technology 14, no. 4 (December 2024): 1432-37. https://doi.org/10.21597/jist.1521217.
EndNote Karacalı Tunç A, Sarıtaş BM, Marzi M, Şenel Dursun F, Kaya Ş (December 1, 2024) Antimicrobial Effect of Drinkable Lugol Solution. Journal of the Institute of Science and Technology 14 4 1432–1437.
IEEE A. Karacalı Tunç, B. M. Sarıtaş, M. Marzi, F. Şenel Dursun, and Ş. Kaya, “Antimicrobial Effect of Drinkable Lugol Solution”, J. Inst. Sci. and Tech., vol. 14, no. 4, pp. 1432–1437, 2024, doi: 10.21597/jist.1521217.
ISNAD Karacalı Tunç, Ayşe et al. “Antimicrobial Effect of Drinkable Lugol Solution”. Journal of the Institute of Science and Technology 14/4 (December 2024), 1432-1437. https://doi.org/10.21597/jist.1521217.
JAMA Karacalı Tunç A, Sarıtaş BM, Marzi M, Şenel Dursun F, Kaya Ş. Antimicrobial Effect of Drinkable Lugol Solution. J. Inst. Sci. and Tech. 2024;14:1432–1437.
MLA Karacalı Tunç, Ayşe et al. “Antimicrobial Effect of Drinkable Lugol Solution”. Journal of the Institute of Science and Technology, vol. 14, no. 4, 2024, pp. 1432-7, doi:10.21597/jist.1521217.
Vancouver Karacalı Tunç A, Sarıtaş BM, Marzi M, Şenel Dursun F, Kaya Ş. Antimicrobial Effect of Drinkable Lugol Solution. J. Inst. Sci. and Tech. 2024;14(4):1432-7.