Research Article
BibTex RIS Cite

Akıllı Cam Uygulamaları için Nano Ölçekli Ta:TiO2 Şeffaf İletken Katmanların İncelenmesi

Year 2025, Volume: 15 Issue: 2, 470 - 478, 01.06.2025

Abstract

Artan enerji ihtiyacını karşılamaya dönük yeni ve alternatif enerji kaynaklarının araştırılması için dünya genelinde yoğun bir çaba harcanırken mevcut enerji kaynaklarının verimli kullanılması da son derece önemli hale gelmiştir. Akıllı cam uygulamalarına yönelik çalışmalarda iletken oksit tabaka olarak TCO kullanımı gerekmektedir. Özellikle elektrokromik malzemelerde iletken oksit tabaka ile uygulanan küçük bir voltaj ile şeffaf/renkli hale dönüştürülebilen elektrokromik camlar enerji tasarruflu binaların önemli bileşenlerinden biridir. Toplamda 5 tabakadan oluşan tam bir EC cihazın iki tabakası şeffaf iletken tabaka olup uygulamada genellikle ITO kullanılmaktadır. Bu projede WO3 temelli EC cihazlarında ITO ya alternatif olarak tantal katkılı TiO2 filmleri araştırıldı. Farklı kalınlıklardaki Ta:TiO2 filmleri radyo frekansı magnetron saçtırma yöntemi ile alttaş sıcaklığı 500 ºC tutularak büyütüldü. Elde edilen filmlerin yapısal, morfolojik, optik ve elektrik özellikleri XRD, SEM, AFM, UV-vis-NIR, XPS ve Hall etkisi ölçümleri ile gerçekleştirildi. Ta katkılı filmler için TiOx filminin kalınlığı 90 Å olarak sabit tutulurken Ta tabakalarının kalınlıkları ise 6 Å, 12 Å ve 18 Å olacak şekilde değiştirildi. XRD ölçümlerinden bütün filmlerin amorf yapıda büyüdükleri gözlenirken XRR ölçümlerinden ise filmlerin tabaka yoğunluklarının Ta miktarı arttıkça arttığı görüldü. Katkısız TiO2 filminin geçirgenliği % 90 civarında iken Ta katkısı ile filmlerin geçirgenliklerinde azalma gerçekleşmiştir. Ta katkısıyla yüzey kabalığı başlangıçta azalırken miktar arttıkça artmıştır. XPS spektrumlarının analizinden Ta 4f bandının 26-27 eV aralığında olduğu ve bu değerin Ta2O5 fazına karşılık geldiği bulunmuştur. Ti 2p bandları 457-459 eV aralığında olup bu değerler TiO2 fazını işaret etmektedir. Ta miktarlarıyla bu piklerin bağlanma enerjilerinde kaymalar gözlenmiştir.

Project Number

GTU BAP 2021-A-102-06

References

  • Agura, H., Suzuki, A., Matsushita, T., Aoki, T., & Okuda, M. (2003). Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films, 445(2), 263–267. https://doi.org/10.1016/S0040-6090(03)01158-1.
  • Alizadeh, A., Rajabi, Y., & Bagheri–Mohagheghi, M. M. (2022). Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films. Optical Materials, 131(May), 1–11. https://doi.org/10.1016/j.optmat.2022.112589.
  • Bhosle, V., & Narayan, J. (2006). Microstructure and electrical property correlations in Ga: ZnO transparent conducting thin films. Journal of applied physics, 100(9).
  • Chandra Sekhar, M., Nanda Kumar Reddy, N., Verma, V. K., & Uthanna, S. (2016). Structural, optical and electrical properties of DC reactive magnetron sputtered (Ta2O5)1−x(TiO2)x thin films. Ceramics International, 42(16), 18870–18878. https://doi.org/10.1016/j.ceramint.2016.09.034.
  • Chen, D. M., Xu, G., Miao, L., Nakao, S., & Jin, P. (2011). Sputter deposition and computational study of M-TiO2 (M= Nb, Ta) transparent conducting oxide films. Surface and Coatings Technology, 206(5), 1020-1023.
  • Deki, S., Aoi, Y., Asaoka, Y., Kajinami, A., & Mizuhata, M. (1997). Monitoring the growth of titanium oxide thin films by theliquid-phase deposition method with a quartz crystal microbalance. Journal of Materials Chemistry, 7(5), 733-736.
  • Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., ... & Hasegawa, T. (2005). A transparent metal: Nb-doped anatase TiO2. Applied Physics Letters, 86(25).
  • Hitosugi, T., Furubayashi, Y., Ueda, A., Itabashi, K., Inaba, K., Hirose, Y., Kinoda, G., Yamamoto, Y., Shimada, T., & Hasegawa, T. (2005). Ta-doped anatase TiO2epitaxial film as transparent conducting oxide. Japanese Journal of Applied Physics, Part 2: Letters, 44(33–36), 2–5. https://doi.org/10.1143/JJAP.44.L1063.
  • Kafizas, A., Noor, N., Carmalt, C. J., & Parkin, I. P. (2013). TiO 2-based transparent conducting oxides; the search for optimum electrical conductivity using a combinatorial approach. Journal of Materials Chemistry C, 1(39), 6335-6346.
  • Kao, P. C., Hsu, C. J., Chen, Z. H., & Chen, S. H. (2022). Highly transparent and conductive MoO3/Ag/MoO3 multilayer films via air annealing of the MoO3 layer for ITO-free organic solar cells. Journal of Alloys and Compounds, 906, 164387.
  • Liu, Y., Peng, Q., Zhou, Z. P., & Yang, G. (2018). Effects of Substrate Temperature on Properties of Transparent Conductive Ta-Doped TiO2 Films Deposited by Radio-Frequency Magnetron Sputtering. Chinese Physics Letters, 35(4), 2–7. https://doi.org/10.1088/0256-307X/35/4/048101.
  • Mazzolini, P., Gondoni, P., Russo, V., Chrastina, D., Casari, C. S., & Li Bassi, A. (2015). Tuning of electrical and optical properties of highly conducting and transparent Ta-doped TiO2 polycrystalline films. The Journal of Physical Chemistry C, 119(13), 6988-6997.
  • Moulder, J. F., Stickle, W. F., Sobol, P. E., & Domben, K. D., 1992. X-ray photoelectron spectroscopy (XPS), Handbook of Adhesion, 2nd ed., Perkin-Elmer Corp., 621–622.
  • Nurfani, E., Kurniawan, R., Muhammady, S., Marlina, R., Sutjahja, I. M., Winata, T., Rusydi, A., & Darma, Y. (2016). Effect of Ta concentration on the refractive index of TiO2:Ta studied by spectroscopic ellipsometry. AIP Conference Proceedings, 1725(May), 2–6. https://doi.org/10.1063/1.4945511.
  • Tajima, K., Yamada, Y., Bao, S., Okada, M., & Yoshimura, K. (2008). Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror. Journal of Physics: Conference Series, 100(8), 082017. https://doi.org/10.1088/1742-6596/100/8/082017.
  • Terzini, E., Thilakan, P., & Minarini, C. (2000). Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 77(1), 110–114. https://doi.org/10.1016/S0921-5107(00)00477-3.
  • Tsutsumi, N., Ootsuki, D., Ishida, T., & Yoshida, T. (2024). Anomalous Carrier Enhancement with Lightly Mn Doping in Indium – Tin Oxide Thin Films Studied by Hard X-ray Photoemission Spectroscopy. 104801, 2–7. https://doi.org/10.7566/JPSJ.93.104801
  • Wong, L. M., Chiam, S. Y., Huang, J. Q., Wang, S. J., Chim, W. K., & Pan, J. S. (2011). Examining the transparency of gallium-doped zinc oxide for photovoltaic applications. Solar Energy Materials and Solar Cells, 95(8), 2400–2406. https://doi.org/10.1016/j.solmat.2011.04.013.
  • Yan, Y., Lee, J., & Cui, X. (2017). Enhanced photoelectrochemical properties of Ta-TiO2 nanotube arrays prepared by magnetron sputtering. Vacuum, 138, 30–38. https://doi.org/10.1016/j.vacuum.2016.12.049.

Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications

Year 2025, Volume: 15 Issue: 2, 470 - 478, 01.06.2025

Abstract

An intense effort has been given globally to the investigation of new and alternative renewable energy sources in order to meet the increasing energy needs of societies. On the other hand, effective usage of energy sources is also an important issue. TCO should be used as a conductive oxide layer in smart glass applications. Especially in electrochromic (EC) materials, electrochromic glasses, which can be converted into transparent / colored with a small voltage applied with a conductive oxide layer, are one of the important components of energy-saving buildings. A complete EC device has a total of 5 layers including two transparent conducting layers, usually ITO in application. In this paper, tantalum doped TiO2 films have been investigated as an alternative to ITO for WO3 based EC devices. Ta:TiO2 films of different thicknesses were grown on glass substrates that were heated to 500 ºC by radiofrequency magnetron sputtering. The structural, optic and morphological properties of the films were investigated by means of XRD, XRR, SEM, AFM, UV-vis-NIR, XPS and Hall effect measurements. The thickness of TiO2 films was kept constant at 90 Å while the thickness of Ta films were varied as 6 Å, 12 Å and 18 Å. XRD analysis showed that all of the films were amorphous. The XRR measurements indicated that the layer density increased with increasing Ta content. The transparency of undoped TiO2 film had a transparency of 90 % and decreased with Ta doping. Addition of Ta initially caused a decrease in the surface roughness after which it increased. The binding energy of Ta 4f band was in the 26-27 eV range indicating the Ta2O5 phase while the binding energy of Ti 2p bands were found to be in 457-459 eV interval, indicating the TiO2 phase. A shift was observed in the positions of these bands with the Ta content.

Supporting Institution

Gebze Technical University

Project Number

GTU BAP 2021-A-102-06

References

  • Agura, H., Suzuki, A., Matsushita, T., Aoki, T., & Okuda, M. (2003). Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films, 445(2), 263–267. https://doi.org/10.1016/S0040-6090(03)01158-1.
  • Alizadeh, A., Rajabi, Y., & Bagheri–Mohagheghi, M. M. (2022). Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films. Optical Materials, 131(May), 1–11. https://doi.org/10.1016/j.optmat.2022.112589.
  • Bhosle, V., & Narayan, J. (2006). Microstructure and electrical property correlations in Ga: ZnO transparent conducting thin films. Journal of applied physics, 100(9).
  • Chandra Sekhar, M., Nanda Kumar Reddy, N., Verma, V. K., & Uthanna, S. (2016). Structural, optical and electrical properties of DC reactive magnetron sputtered (Ta2O5)1−x(TiO2)x thin films. Ceramics International, 42(16), 18870–18878. https://doi.org/10.1016/j.ceramint.2016.09.034.
  • Chen, D. M., Xu, G., Miao, L., Nakao, S., & Jin, P. (2011). Sputter deposition and computational study of M-TiO2 (M= Nb, Ta) transparent conducting oxide films. Surface and Coatings Technology, 206(5), 1020-1023.
  • Deki, S., Aoi, Y., Asaoka, Y., Kajinami, A., & Mizuhata, M. (1997). Monitoring the growth of titanium oxide thin films by theliquid-phase deposition method with a quartz crystal microbalance. Journal of Materials Chemistry, 7(5), 733-736.
  • Furubayashi, Y., Hitosugi, T., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., ... & Hasegawa, T. (2005). A transparent metal: Nb-doped anatase TiO2. Applied Physics Letters, 86(25).
  • Hitosugi, T., Furubayashi, Y., Ueda, A., Itabashi, K., Inaba, K., Hirose, Y., Kinoda, G., Yamamoto, Y., Shimada, T., & Hasegawa, T. (2005). Ta-doped anatase TiO2epitaxial film as transparent conducting oxide. Japanese Journal of Applied Physics, Part 2: Letters, 44(33–36), 2–5. https://doi.org/10.1143/JJAP.44.L1063.
  • Kafizas, A., Noor, N., Carmalt, C. J., & Parkin, I. P. (2013). TiO 2-based transparent conducting oxides; the search for optimum electrical conductivity using a combinatorial approach. Journal of Materials Chemistry C, 1(39), 6335-6346.
  • Kao, P. C., Hsu, C. J., Chen, Z. H., & Chen, S. H. (2022). Highly transparent and conductive MoO3/Ag/MoO3 multilayer films via air annealing of the MoO3 layer for ITO-free organic solar cells. Journal of Alloys and Compounds, 906, 164387.
  • Liu, Y., Peng, Q., Zhou, Z. P., & Yang, G. (2018). Effects of Substrate Temperature on Properties of Transparent Conductive Ta-Doped TiO2 Films Deposited by Radio-Frequency Magnetron Sputtering. Chinese Physics Letters, 35(4), 2–7. https://doi.org/10.1088/0256-307X/35/4/048101.
  • Mazzolini, P., Gondoni, P., Russo, V., Chrastina, D., Casari, C. S., & Li Bassi, A. (2015). Tuning of electrical and optical properties of highly conducting and transparent Ta-doped TiO2 polycrystalline films. The Journal of Physical Chemistry C, 119(13), 6988-6997.
  • Moulder, J. F., Stickle, W. F., Sobol, P. E., & Domben, K. D., 1992. X-ray photoelectron spectroscopy (XPS), Handbook of Adhesion, 2nd ed., Perkin-Elmer Corp., 621–622.
  • Nurfani, E., Kurniawan, R., Muhammady, S., Marlina, R., Sutjahja, I. M., Winata, T., Rusydi, A., & Darma, Y. (2016). Effect of Ta concentration on the refractive index of TiO2:Ta studied by spectroscopic ellipsometry. AIP Conference Proceedings, 1725(May), 2–6. https://doi.org/10.1063/1.4945511.
  • Tajima, K., Yamada, Y., Bao, S., Okada, M., & Yoshimura, K. (2008). Proton conductive tantalum oxide thin film deposited by reactive DC magnetron sputtering for all-solid-state switchable mirror. Journal of Physics: Conference Series, 100(8), 082017. https://doi.org/10.1088/1742-6596/100/8/082017.
  • Terzini, E., Thilakan, P., & Minarini, C. (2000). Properties of ITO thin films deposited by RF magnetron sputtering at elevated substrate temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 77(1), 110–114. https://doi.org/10.1016/S0921-5107(00)00477-3.
  • Tsutsumi, N., Ootsuki, D., Ishida, T., & Yoshida, T. (2024). Anomalous Carrier Enhancement with Lightly Mn Doping in Indium – Tin Oxide Thin Films Studied by Hard X-ray Photoemission Spectroscopy. 104801, 2–7. https://doi.org/10.7566/JPSJ.93.104801
  • Wong, L. M., Chiam, S. Y., Huang, J. Q., Wang, S. J., Chim, W. K., & Pan, J. S. (2011). Examining the transparency of gallium-doped zinc oxide for photovoltaic applications. Solar Energy Materials and Solar Cells, 95(8), 2400–2406. https://doi.org/10.1016/j.solmat.2011.04.013.
  • Yan, Y., Lee, J., & Cui, X. (2017). Enhanced photoelectrochemical properties of Ta-TiO2 nanotube arrays prepared by magnetron sputtering. Vacuum, 138, 30–38. https://doi.org/10.1016/j.vacuum.2016.12.049.
There are 19 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other), Materials Science and Technologies
Journal Section Fizik / Physics
Authors

Ali Kemal Mak 0000-0002-5380-0314

Osman Öztürk 0000-0002-9729-8792

Mevlüt Karabulut 0000-0002-0227-318X

Project Number GTU BAP 2021-A-102-06
Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date September 4, 2024
Acceptance Date January 2, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Mak, A. K., Öztürk, O., & Karabulut, M. (2025). Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications. Journal of the Institute of Science and Technology, 15(2), 470-478.
AMA Mak AK, Öztürk O, Karabulut M. Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications. J. Inst. Sci. and Tech. June 2025;15(2):470-478.
Chicago Mak, Ali Kemal, Osman Öztürk, and Mevlüt Karabulut. “Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 470-78.
EndNote Mak AK, Öztürk O, Karabulut M (June 1, 2025) Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications. Journal of the Institute of Science and Technology 15 2 470–478.
IEEE A. K. Mak, O. Öztürk, and M. Karabulut, “Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 470–478, 2025.
ISNAD Mak, Ali Kemal et al. “Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications”. Journal of the Institute of Science and Technology 15/2 (June 2025), 470-478.
JAMA Mak AK, Öztürk O, Karabulut M. Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications. J. Inst. Sci. and Tech. 2025;15:470–478.
MLA Mak, Ali Kemal et al. “Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 470-8.
Vancouver Mak AK, Öztürk O, Karabulut M. Investigation of Nanoscale Ta:TiO2 Transparent Conductive Layers for Smart Glass Applications. J. Inst. Sci. and Tech. 2025;15(2):470-8.