Research Article
BibTex RIS Cite

Electron Irradiation Impact on Silicon Schottky Diode

Year 2025, Volume: 15 Issue: 2, 493 - 508

Abstract

Au/n-Si/Au-Sb Schottky diode was fabricated, and electron irradiation was applied to the diode at 25 and 50 gray doses. The effects of irradiation on the electrical characteristics of the diode were analyzed by means of current-voltage, capacitance-voltage, conductance-voltage, and capacitance-frequency measurements before and after irradiation. With increasing irradiation dose, changes were observed in the ideality factor, barrier height, interface states, series resistance, dielectric constant, and diffusion potential values. The n value was found to be 1.231, 1.306, and 1.350 before, for 25-gray, and 50-gray irradiation, respectively. The value of Φb was 0.742 eV, before irradiation. Depending on 25 and 50 gray irradiations, it was calculated as 0.768 and 0.761 eV, respectively. It has been observed that the diode deviates from ideality due to defects in the diode interface depending on irradiation. Furthermore, it has been observed that electron irradiation causes changes in the electrical properties of the Au/n-Si/Au-Sb Schottky diode.

References

  • Aboelfotoh, M. O. (1989). Influence of thin interfacial silicon oxide layers on the Schottky-barrier behavior of Ti on Si (100). Physical Review B, 39(8), 5070.
  • Akgül, F. D., Eymur, S., Akın, Ü., Yüksel, Ö. F., Karadeniz, H., & Tuğluoğlu, N. (2021). Investigation of Schottky emission and space charge limited current (SCLC) in Au/SnO2/n-Si Schottky diode with gamma-ray irradiation. Journal of Materials Science: Materials in Electronics, 32(12), 15857-15863.
  • Alsmael, J. A. M., Tan, S. O., Tecimer, H. U., Altındal, Ş., & Kalandaragh, Y. A. (2022). The Impact of Dopant on the Dielectric Properties of Metal-Semiconductor with ZnFe2O4 Doped Organic Polymer Nanocomposites Interlayer. IEEE Transactions on Nanotechnology, 21, 528-533.
  • Al-Ta'ii, H., Amin, Y., & Periasamy, V. (2015). Calculation of the electronic parameters of an Al/DNA/p-Si Schottky barrier diode influenced by alpha radiation. Sensors, 15(3), 4810-4822.
  • Aydın, M. E., Kılıçoğlu, T., Akkılıç, K., & Hoşgören, H. (2006). The calculation of electronic parameters of an Au/β-carotene/n-Si Schottky barrier diode. Physica B: Condensed Matter, 381(1-2), 113-117.
  • Aydoğan, Ş., Şerifoğlu, K., & Türüt, A. (2011). The effect of electron irradiation on the electrical characteristics of the Aniline Blue/n-Si/Al device. Solid State Sciences, 13(7), 1369-1374.
  • Bodunrin, J. O., & Moloi, S. J. (2022). Current-voltage characteristics of 4 MeV proton-irradiated silicon diodes at room temperature. Silicon, 14 (16), 10237-10244.
  • Bose, S., Gupta, M., & Gupta, R. S., (2001). I–V characteristics of optically biased short channel GaAs MESFET. Microelectronics Journal, 32, 241–247.
  • Brudnyi, V. N., Grinyaev, S. N., Kolin, N. G., (2004). A model for Fermi-level pinning in semiconductors: radiation defects, interface boundaries. Physica B: Condensed Matter, 348 (1-4), 213–225.
  • Cao, S., Yu, Q., Wang, H., Sun, Y., Lv, H., Mei, B., ... & Tang, M. (2020). Radiation effects on silicon carbide junction Barrier Schottky diodes caused by high energy proton. In 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems, (81-84).
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes II. Thermal equilibrium considerations. Journal of Physics D: Applied Physics, 4(10), 1602.
  • Cheung, S. K., & Cheung, N. W., (1986). Extraction of Schottky Diode Parameters From I-V Characteristics. Applied Physics Letters, 49 (2), 85-87.
  • Coskun, C., Gedik, N., & Balcı, E. (2006). The effect of high-energy electron irradiation on ZnO-based ohmic and Schottky contacts. Semiconductor science and technology, 21(12), 1656.
  • Çaldıran, Z., & Taşyürek, L. B. (2021). The role of molybdenum trioxide in the change of electrical properties of Cr/MoO3/n-Si heterojunction and electrical characterization of this device depending on temperature. Sensors and Actuators A: Physical, 328, 112765.
  • Demi̇r, K. Ç., Kurudirek, S. V., Oz, S., Biber, M., Aydoğan, Ş., Şahin, Y., & Coşkun, C. (2018). The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode. Surface Review and Letters, 25(03), 1850064.
  • Güllü, Ö., Aydoğan, Ş., Şerifoğlu, K., Türüt, A., (2008). Electron irradiation effects on the organic-on-inorganic silicon Schottky structure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593(3), 544-549.
  • Huang, Y., Xu, X., Yang, J., Yu, X., Wei, Y., Ying, T., ... & Li, X. (2024). Defect Identification in β-Ga2O3 Schottky Barrier Diodes with electron radiation and annealing regulating. IEEE Transactions on Nuclear Science,71, 1178-1185
  • Karataş, Ş., & Türüt, A. (2004). The determination of interface state energy distribution of the H-terminated Zn/p-type Si Schottky diodes with high series resistance by the admittance spectroscopy. Vacuum, 74(1), 45-53.
  • Karataş, Ş., & Türüt, A. (2006). Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60Co γ-ray source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 566(2), 584-589.
  • Kaymaz, A., Uslu Tecimer, H., Evcin Baydilli, E., & Altındal, Ş. (2020). Investigation of gamma-irradiation effects on electrical characteristics of Al/(ZnO–PVA)/p-Si Schottky diodes using capacitance and conductance measurements. Journal of Materials Science: Materials in Electronics, 31(11), 8349-8358.
  • Kaymaz, A., Baydilli, E. E., Tecimer, H. U., Altındal, Ş., & Azizian-Kalandaragh, Y. (2021). Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements. Radiation Physics and Chemistry, 183, 109430.
  • Krishnan, S., Sanjeev, G., & Pattabi, M., (2008). Electron irradiation effects on the Schottky diode characteristics of p-Si. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (4) , 621-624.
  • Kumar, S., Mariswamy, V. K., Shankaregowda, R. H., Sannathammegowda, K., & Reddy, V. R. (2024). Effects of 10 MeV Electron Irradiation on Electrical Properties of Ni/Pd/n-GaN Schottky Barrier Diodes. Semiconductors, 58(6), 512-518.
  • Kutluoğlu, E. E., Orhan, E. Ö., Bayram, Ö., & Ocak, S. B. (2021). Gamma-ray irradiation effects on capacitance and conductance of graphene-based Schottky diode. Physica B: Condensed Matter, 621, 413306.
  • Maurya, S. (2016). Effect of zero bias Gamma ray irradiation on HfO2 thin films. Journal of Materials Science: Materials in Electronics, 27, 12796-12802.
  • Messenger, G. C. (1992). A summary review of displacement damage from high energy radiation in silicon semiconductors and semiconductor devices. IEEE Transactions on nuclear Science, 39(3), 468-473.
  • Narita, S., Hitora, T., Yamaguchi, E., Sakemi, Y., Itoh, M., Yoshida, H., ... & Neichi, K. (2013). Effects of high-energy proton and electron irradiation on GaN Schottky diode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 717, 1-4.
  • Neamen, D. A., (1992). Semiconductors Physics and Devices. New York, McGraw-Hill.
  • Ntsoenzok, E., Barbot, J. F., Desgardin, P., Vernois, J., Blanchard, C., & Isabelle, D. B. (1994). Study of the defects induced in N-type silicon irradiated by 1-3 MeV protons. IEEE transactions on nuclear science, 41(6), 1932-1936.
  • Nuhoğlu, Ç., Temirci, C., Bati, B., Biber, M., & Türüt, A. (2000). Effect of thermal annealing on Co/n-LEC GaAs (Te) Schottky contacts. Solid state communications, 115(6), 291-295.
  • Oeba, D. A., Bodunrin, J. O., & Moloi, S. J. (2021). Electrical properties of 3 MeV proton irradiated silicon Schottky diodes Physic B: Condensed Matter, 610, 412786.
  • Paradzah, A. T., Auret, F. D., Legodi, M. J., Omotoso, E., & Diale, M. (2015). Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 358, 112-116.
  • Parida, M. K., Sundari, S. T., Sathiamoorthy, V., & Sivakumar, S. (2018). Current–voltage characteristics of silicon PIN diodes irradiated in KAMINI nuclear reactor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 905, 129-137.
  • Prochazkova, O., Grym, J., Zavadil, J., & Zdansky, K., (2005). Preparation of p-type InP layers for detection of radiation. Journal of Crystal Growth, 275, 959-963.
  • Radwan, R. M. (2007). High gamma dose response of the electrical properties of polyethylene terephthalate thin films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262(2), 249-254.
  • Ren, Y., Zhu, M., Xu, D., Liu, M., Dai, X., Wang, S., & Li, L. (2024). Overview on Radiation Damage Effects and Protection Techniques in Microelectronic Devices. Science and Technology of Nuclear Installations, 2024(1), 3616902.
  • Rhoderick E. H. & Williams R. H., (1988). Metal-semiconductor contacts, 2nd edn., Oxford, Clarendon Press.
  • Roccaforte, F., Libertino, S., Raineri, V., Ruggiero, A., Massimino, V., & Calcagno, L. (2006). Defects and electrical behavior in 1 MeV Si+-ion-irradiated 4H–SiC Schottky diodes. Journal of applied physics, 99(1), 013515.
  • Salari, M. A., Şenarslan, E., Güzeldir, B., & Sağlam, M. (2016). Effects of the γ-radiation on the electrical characteristics of the Au/n-Si/Au-Sb Schottky diode. In Journal of Physics: Conference Series, (Vol. 707, No. 1, p. 012018).
  • Salari, M. A., Güzeldir, B., & Sağlam, M. (2018). The effects of gamma irradiation on electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure. In AIP Conference Proceedings, (Vol. 1935, No. 1, p. 050002). Selçuk, A. B., & Ocak, S. B., (2007). 60Co γ -ray irradiation effects on the capacitance and conductance characteristics of tin oxide films on Si. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 577(3), 719-723.
  • Sharma, C., Visvkarma, A. K., Laishram, R., Kumar, A., Rawal, D. S., Vinayak, S., & Singh, R. (2020). Effect of γ-ray irradiation on Schottky and ohmic contacts on AlGaN/GaN hetero-structures. Microelectronics Reliability, 105, 113565.
  • Snow, E. H., Grove, A. S., & Fitzgerald, D. J. (1967). Effects of ionizing radiation on oxidized silicon surfaces and planar devices. Proceedings of the IEEE, 55(7), 1168-1185.
  • Şahin, Y., Aydoğan, Ş., Ekinci, D., & Turut, A. (2016). The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation. Materials Chemistry and Physics, 183, 516-523.
  • Teffahi, A., Hamri, D., Mostefa, A., Saidane, A., Al Saqri, N., Felix, J. F., & Henini, M. (2016). Effect of 60Co γ-ray irradiation on electrical properties of Ti/Au/GaAs1− xNx Schottky diodes. Current Applied Physics, 16(8), 850-858.
  • Tuğluoğlu, N., Karadeniz, S., Yüksel, Ö. F., Şafak, H., & Kuş, M. (2015). 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes. Indian Journal of Physics, 89(8), 803-810.
  • Uğurel, E., Aydoğan, Ş., Şerifoğlu, K., & Türüt, A., (2008). Effect of 6 MeV electron irradiation on electrical characteristics of the Au/n-Si/Al Schottky diode. Microelectronic Engineering, 85(11) , 2299–2303.
  • Umana-Membreno, G. A., Dell, J. M., Parish, G., Nener, B. D., Faraone, L., & Mishra, U. K. (2003). /sup 60/Co gamma irradiation effects on n-GaN Schottky diodes. IEEE Transactions on Electron Devices, 50(12), 2326-2334.
  • Vaitkus, J., Kazukauskas, V., Didziulis, R., Storasta, J., Bates, R., Da Via, C., O’Shca, V., Raine, C., & Smith, K. M., (1998). Defects and radiation damage in semi-insulating GaAs radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 410 (1), 61-67.
  • Vali, I. P., Shetty, P. K., Mahesha, M. G., Petwal, V. C., Dwivedi, J., & Choudhary, R. J. (2017). Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation. Applied Surface Science, 407, 171-176.
  • Veeramani, P., Haris, M., Babu, S. M., Kanjilal, D., & Sugathan, P. (2008). Investigation of swift heavy ion irradiation effects on Au/CdTe and Au/CdZnTe Schottky barrier diode. Radiation Measurements, 43(1), 56-61.
  • Verma, S., Praveen, K.C., Bobby, A., Kanjilal, D., (2014). Recovery of electrical characteristics of Au/n-Si Schottky junction under 60Co gamma irradiation. IEEE Transaction on Device and Materials Reliability, 14 (2), 721–725.
  • Vieira, D. H., da Silva Ozório, M., Nogueira, G. L., Fugikawa-Santos, L., & Alves, N. (2021). UV-photocurrent response of zinc oxide based devices: Application to ZnO/PEDOT: PSS hydrid Schottky diodes. Materials Science in Semiconductor Processing, 121, 105339. Wang, S., Hu, R., Chen, G., Luo, C., Gong, M., Li, Y., ... & Yang, Z. (2021). Investigation of 4H-SiC Schottky barrier diodes irradiated with 6 MeV Au ions at low temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 494, 53-58.
  • Werner, J. H., & Güttler, H. H. (1991). Barrier inhomogeneities at Schottky contacts. Journal of applied physics, 69(3), 1522-1533.
  • Xu, Y., Bi, J., Xi, K., & Liu, M. (2019). The effects of γ-ray irradiation on graphene/n-Si Schottky diodes. Applied Physics Express, 12(6), 061004.
  • Yamaguchi, M. (2001). Radiation-resistant solar cells for space use. Solar energy materials and solar cells, 68(1), 31-53.
  • Yılmaz, E., & Kaya, S. (2016). A Detailed Study on Zero-Bias Irradiation Responses of La2O3 MOS Capacitors. IEEE Transactions on Nuclear Science, 63(2), 1301-1305.
  • Zhang, Z., Wang, T., Xiao, L., Liu, C., Zhou, J., Zhang, Y., ... & Huo, M. (2024). Effect of Electron Irradiation and Defect Analysis of β-Ga2O3 Schottky Barrier Diodes. IEEE Transactions on Electron Devices, 71(3), 1676-1680.
  • Zoutendyk, J. A., Schwartz, H. R., & Nevill, L. R. (1988). Lateral charge transport from heavy-ion tracks in integrated circuit chips. IEEE Transactions on Nuclear Science, 35(6), 1644-1647.
Year 2025, Volume: 15 Issue: 2, 493 - 508

Abstract

References

  • Aboelfotoh, M. O. (1989). Influence of thin interfacial silicon oxide layers on the Schottky-barrier behavior of Ti on Si (100). Physical Review B, 39(8), 5070.
  • Akgül, F. D., Eymur, S., Akın, Ü., Yüksel, Ö. F., Karadeniz, H., & Tuğluoğlu, N. (2021). Investigation of Schottky emission and space charge limited current (SCLC) in Au/SnO2/n-Si Schottky diode with gamma-ray irradiation. Journal of Materials Science: Materials in Electronics, 32(12), 15857-15863.
  • Alsmael, J. A. M., Tan, S. O., Tecimer, H. U., Altındal, Ş., & Kalandaragh, Y. A. (2022). The Impact of Dopant on the Dielectric Properties of Metal-Semiconductor with ZnFe2O4 Doped Organic Polymer Nanocomposites Interlayer. IEEE Transactions on Nanotechnology, 21, 528-533.
  • Al-Ta'ii, H., Amin, Y., & Periasamy, V. (2015). Calculation of the electronic parameters of an Al/DNA/p-Si Schottky barrier diode influenced by alpha radiation. Sensors, 15(3), 4810-4822.
  • Aydın, M. E., Kılıçoğlu, T., Akkılıç, K., & Hoşgören, H. (2006). The calculation of electronic parameters of an Au/β-carotene/n-Si Schottky barrier diode. Physica B: Condensed Matter, 381(1-2), 113-117.
  • Aydoğan, Ş., Şerifoğlu, K., & Türüt, A. (2011). The effect of electron irradiation on the electrical characteristics of the Aniline Blue/n-Si/Al device. Solid State Sciences, 13(7), 1369-1374.
  • Bodunrin, J. O., & Moloi, S. J. (2022). Current-voltage characteristics of 4 MeV proton-irradiated silicon diodes at room temperature. Silicon, 14 (16), 10237-10244.
  • Bose, S., Gupta, M., & Gupta, R. S., (2001). I–V characteristics of optically biased short channel GaAs MESFET. Microelectronics Journal, 32, 241–247.
  • Brudnyi, V. N., Grinyaev, S. N., Kolin, N. G., (2004). A model for Fermi-level pinning in semiconductors: radiation defects, interface boundaries. Physica B: Condensed Matter, 348 (1-4), 213–225.
  • Cao, S., Yu, Q., Wang, H., Sun, Y., Lv, H., Mei, B., ... & Tang, M. (2020). Radiation effects on silicon carbide junction Barrier Schottky diodes caused by high energy proton. In 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems, (81-84).
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes II. Thermal equilibrium considerations. Journal of Physics D: Applied Physics, 4(10), 1602.
  • Cheung, S. K., & Cheung, N. W., (1986). Extraction of Schottky Diode Parameters From I-V Characteristics. Applied Physics Letters, 49 (2), 85-87.
  • Coskun, C., Gedik, N., & Balcı, E. (2006). The effect of high-energy electron irradiation on ZnO-based ohmic and Schottky contacts. Semiconductor science and technology, 21(12), 1656.
  • Çaldıran, Z., & Taşyürek, L. B. (2021). The role of molybdenum trioxide in the change of electrical properties of Cr/MoO3/n-Si heterojunction and electrical characterization of this device depending on temperature. Sensors and Actuators A: Physical, 328, 112765.
  • Demi̇r, K. Ç., Kurudirek, S. V., Oz, S., Biber, M., Aydoğan, Ş., Şahin, Y., & Coşkun, C. (2018). The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode. Surface Review and Letters, 25(03), 1850064.
  • Güllü, Ö., Aydoğan, Ş., Şerifoğlu, K., Türüt, A., (2008). Electron irradiation effects on the organic-on-inorganic silicon Schottky structure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 593(3), 544-549.
  • Huang, Y., Xu, X., Yang, J., Yu, X., Wei, Y., Ying, T., ... & Li, X. (2024). Defect Identification in β-Ga2O3 Schottky Barrier Diodes with electron radiation and annealing regulating. IEEE Transactions on Nuclear Science,71, 1178-1185
  • Karataş, Ş., & Türüt, A. (2004). The determination of interface state energy distribution of the H-terminated Zn/p-type Si Schottky diodes with high series resistance by the admittance spectroscopy. Vacuum, 74(1), 45-53.
  • Karataş, Ş., & Türüt, A. (2006). Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60Co γ-ray source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 566(2), 584-589.
  • Kaymaz, A., Uslu Tecimer, H., Evcin Baydilli, E., & Altındal, Ş. (2020). Investigation of gamma-irradiation effects on electrical characteristics of Al/(ZnO–PVA)/p-Si Schottky diodes using capacitance and conductance measurements. Journal of Materials Science: Materials in Electronics, 31(11), 8349-8358.
  • Kaymaz, A., Baydilli, E. E., Tecimer, H. U., Altındal, Ş., & Azizian-Kalandaragh, Y. (2021). Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements. Radiation Physics and Chemistry, 183, 109430.
  • Krishnan, S., Sanjeev, G., & Pattabi, M., (2008). Electron irradiation effects on the Schottky diode characteristics of p-Si. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266 (4) , 621-624.
  • Kumar, S., Mariswamy, V. K., Shankaregowda, R. H., Sannathammegowda, K., & Reddy, V. R. (2024). Effects of 10 MeV Electron Irradiation on Electrical Properties of Ni/Pd/n-GaN Schottky Barrier Diodes. Semiconductors, 58(6), 512-518.
  • Kutluoğlu, E. E., Orhan, E. Ö., Bayram, Ö., & Ocak, S. B. (2021). Gamma-ray irradiation effects on capacitance and conductance of graphene-based Schottky diode. Physica B: Condensed Matter, 621, 413306.
  • Maurya, S. (2016). Effect of zero bias Gamma ray irradiation on HfO2 thin films. Journal of Materials Science: Materials in Electronics, 27, 12796-12802.
  • Messenger, G. C. (1992). A summary review of displacement damage from high energy radiation in silicon semiconductors and semiconductor devices. IEEE Transactions on nuclear Science, 39(3), 468-473.
  • Narita, S., Hitora, T., Yamaguchi, E., Sakemi, Y., Itoh, M., Yoshida, H., ... & Neichi, K. (2013). Effects of high-energy proton and electron irradiation on GaN Schottky diode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 717, 1-4.
  • Neamen, D. A., (1992). Semiconductors Physics and Devices. New York, McGraw-Hill.
  • Ntsoenzok, E., Barbot, J. F., Desgardin, P., Vernois, J., Blanchard, C., & Isabelle, D. B. (1994). Study of the defects induced in N-type silicon irradiated by 1-3 MeV protons. IEEE transactions on nuclear science, 41(6), 1932-1936.
  • Nuhoğlu, Ç., Temirci, C., Bati, B., Biber, M., & Türüt, A. (2000). Effect of thermal annealing on Co/n-LEC GaAs (Te) Schottky contacts. Solid state communications, 115(6), 291-295.
  • Oeba, D. A., Bodunrin, J. O., & Moloi, S. J. (2021). Electrical properties of 3 MeV proton irradiated silicon Schottky diodes Physic B: Condensed Matter, 610, 412786.
  • Paradzah, A. T., Auret, F. D., Legodi, M. J., Omotoso, E., & Diale, M. (2015). Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 358, 112-116.
  • Parida, M. K., Sundari, S. T., Sathiamoorthy, V., & Sivakumar, S. (2018). Current–voltage characteristics of silicon PIN diodes irradiated in KAMINI nuclear reactor. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 905, 129-137.
  • Prochazkova, O., Grym, J., Zavadil, J., & Zdansky, K., (2005). Preparation of p-type InP layers for detection of radiation. Journal of Crystal Growth, 275, 959-963.
  • Radwan, R. M. (2007). High gamma dose response of the electrical properties of polyethylene terephthalate thin films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 262(2), 249-254.
  • Ren, Y., Zhu, M., Xu, D., Liu, M., Dai, X., Wang, S., & Li, L. (2024). Overview on Radiation Damage Effects and Protection Techniques in Microelectronic Devices. Science and Technology of Nuclear Installations, 2024(1), 3616902.
  • Rhoderick E. H. & Williams R. H., (1988). Metal-semiconductor contacts, 2nd edn., Oxford, Clarendon Press.
  • Roccaforte, F., Libertino, S., Raineri, V., Ruggiero, A., Massimino, V., & Calcagno, L. (2006). Defects and electrical behavior in 1 MeV Si+-ion-irradiated 4H–SiC Schottky diodes. Journal of applied physics, 99(1), 013515.
  • Salari, M. A., Şenarslan, E., Güzeldir, B., & Sağlam, M. (2016). Effects of the γ-radiation on the electrical characteristics of the Au/n-Si/Au-Sb Schottky diode. In Journal of Physics: Conference Series, (Vol. 707, No. 1, p. 012018).
  • Salari, M. A., Güzeldir, B., & Sağlam, M. (2018). The effects of gamma irradiation on electrical characteristics of Zn/ZnO/n-Si/Au-Sb structure. In AIP Conference Proceedings, (Vol. 1935, No. 1, p. 050002). Selçuk, A. B., & Ocak, S. B., (2007). 60Co γ -ray irradiation effects on the capacitance and conductance characteristics of tin oxide films on Si. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 577(3), 719-723.
  • Sharma, C., Visvkarma, A. K., Laishram, R., Kumar, A., Rawal, D. S., Vinayak, S., & Singh, R. (2020). Effect of γ-ray irradiation on Schottky and ohmic contacts on AlGaN/GaN hetero-structures. Microelectronics Reliability, 105, 113565.
  • Snow, E. H., Grove, A. S., & Fitzgerald, D. J. (1967). Effects of ionizing radiation on oxidized silicon surfaces and planar devices. Proceedings of the IEEE, 55(7), 1168-1185.
  • Şahin, Y., Aydoğan, Ş., Ekinci, D., & Turut, A. (2016). The performance of the anthraquinone/p-Si and the pyridine/p-Si rectifying device under X-ray irradiation. Materials Chemistry and Physics, 183, 516-523.
  • Teffahi, A., Hamri, D., Mostefa, A., Saidane, A., Al Saqri, N., Felix, J. F., & Henini, M. (2016). Effect of 60Co γ-ray irradiation on electrical properties of Ti/Au/GaAs1− xNx Schottky diodes. Current Applied Physics, 16(8), 850-858.
  • Tuğluoğlu, N., Karadeniz, S., Yüksel, Ö. F., Şafak, H., & Kuş, M. (2015). 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes. Indian Journal of Physics, 89(8), 803-810.
  • Uğurel, E., Aydoğan, Ş., Şerifoğlu, K., & Türüt, A., (2008). Effect of 6 MeV electron irradiation on electrical characteristics of the Au/n-Si/Al Schottky diode. Microelectronic Engineering, 85(11) , 2299–2303.
  • Umana-Membreno, G. A., Dell, J. M., Parish, G., Nener, B. D., Faraone, L., & Mishra, U. K. (2003). /sup 60/Co gamma irradiation effects on n-GaN Schottky diodes. IEEE Transactions on Electron Devices, 50(12), 2326-2334.
  • Vaitkus, J., Kazukauskas, V., Didziulis, R., Storasta, J., Bates, R., Da Via, C., O’Shca, V., Raine, C., & Smith, K. M., (1998). Defects and radiation damage in semi-insulating GaAs radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 410 (1), 61-67.
  • Vali, I. P., Shetty, P. K., Mahesha, M. G., Petwal, V. C., Dwivedi, J., & Choudhary, R. J. (2017). Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation. Applied Surface Science, 407, 171-176.
  • Veeramani, P., Haris, M., Babu, S. M., Kanjilal, D., & Sugathan, P. (2008). Investigation of swift heavy ion irradiation effects on Au/CdTe and Au/CdZnTe Schottky barrier diode. Radiation Measurements, 43(1), 56-61.
  • Verma, S., Praveen, K.C., Bobby, A., Kanjilal, D., (2014). Recovery of electrical characteristics of Au/n-Si Schottky junction under 60Co gamma irradiation. IEEE Transaction on Device and Materials Reliability, 14 (2), 721–725.
  • Vieira, D. H., da Silva Ozório, M., Nogueira, G. L., Fugikawa-Santos, L., & Alves, N. (2021). UV-photocurrent response of zinc oxide based devices: Application to ZnO/PEDOT: PSS hydrid Schottky diodes. Materials Science in Semiconductor Processing, 121, 105339. Wang, S., Hu, R., Chen, G., Luo, C., Gong, M., Li, Y., ... & Yang, Z. (2021). Investigation of 4H-SiC Schottky barrier diodes irradiated with 6 MeV Au ions at low temperature. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 494, 53-58.
  • Werner, J. H., & Güttler, H. H. (1991). Barrier inhomogeneities at Schottky contacts. Journal of applied physics, 69(3), 1522-1533.
  • Xu, Y., Bi, J., Xi, K., & Liu, M. (2019). The effects of γ-ray irradiation on graphene/n-Si Schottky diodes. Applied Physics Express, 12(6), 061004.
  • Yamaguchi, M. (2001). Radiation-resistant solar cells for space use. Solar energy materials and solar cells, 68(1), 31-53.
  • Yılmaz, E., & Kaya, S. (2016). A Detailed Study on Zero-Bias Irradiation Responses of La2O3 MOS Capacitors. IEEE Transactions on Nuclear Science, 63(2), 1301-1305.
  • Zhang, Z., Wang, T., Xiao, L., Liu, C., Zhou, J., Zhang, Y., ... & Huo, M. (2024). Effect of Electron Irradiation and Defect Analysis of β-Ga2O3 Schottky Barrier Diodes. IEEE Transactions on Electron Devices, 71(3), 1676-1680.
  • Zoutendyk, J. A., Schwartz, H. R., & Nevill, L. R. (1988). Lateral charge transport from heavy-ion tracks in integrated circuit chips. IEEE Transactions on Nuclear Science, 35(6), 1644-1647.
There are 58 citations in total.

Details

Primary Language English
Subjects Condensed Matter Characterisation Technique Development, Condensed Matter Physics (Other)
Journal Section Fizik / Physics
Authors

Erkan Uğurel 0000-0002-1015-0470

Şakir Aydoğan 0000-0001-5190-8121

Early Pub Date May 24, 2025
Publication Date
Submission Date September 12, 2024
Acceptance Date December 14, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Uğurel, E., & Aydoğan, Ş. (2025). Electron Irradiation Impact on Silicon Schottky Diode. Journal of the Institute of Science and Technology, 15(2), 493-508.
AMA Uğurel E, Aydoğan Ş. Electron Irradiation Impact on Silicon Schottky Diode. J. Inst. Sci. and Tech. May 2025;15(2):493-508.
Chicago Uğurel, Erkan, and Şakir Aydoğan. “Electron Irradiation Impact on Silicon Schottky Diode”. Journal of the Institute of Science and Technology 15, no. 2 (May 2025): 493-508.
EndNote Uğurel E, Aydoğan Ş (May 1, 2025) Electron Irradiation Impact on Silicon Schottky Diode. Journal of the Institute of Science and Technology 15 2 493–508.
IEEE E. Uğurel and Ş. Aydoğan, “Electron Irradiation Impact on Silicon Schottky Diode”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 493–508, 2025.
ISNAD Uğurel, Erkan - Aydoğan, Şakir. “Electron Irradiation Impact on Silicon Schottky Diode”. Journal of the Institute of Science and Technology 15/2 (May 2025), 493-508.
JAMA Uğurel E, Aydoğan Ş. Electron Irradiation Impact on Silicon Schottky Diode. J. Inst. Sci. and Tech. 2025;15:493–508.
MLA Uğurel, Erkan and Şakir Aydoğan. “Electron Irradiation Impact on Silicon Schottky Diode”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 493-08.
Vancouver Uğurel E, Aydoğan Ş. Electron Irradiation Impact on Silicon Schottky Diode. J. Inst. Sci. and Tech. 2025;15(2):493-508.