Research Article
BibTex RIS Cite

The Potential of Aqueous Two-Phase (Ethanol-Salt Based) Systems in the Extraction of Bioactive Compounds: Pistachio (Pistacia vera L.) Wastes as a Model Structure

Year 2025, Volume: 15 Issue: 2, 543 - 555, 01.06.2025
https://doi.org/10.21597/jist.1581092

Abstract

This study investigates the characterization of pistachio waste and evaluates the effectiveness of an alcohol/salt-based aqueous two-phase extraction (ATPS) method for purifying bioactive compounds in this material by comparing with the conventional method. In the initial stage, the physicochemical properties of pistachio wastes (moisture content, total ash, oil content, and color values) were analyzed. Fourier transform infrared spectroscopy (FTIR) confirmed the characteristic structure of pistachio wastes. In addition, the mineral content of the wastes was determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). In the second stage, the composition of ATPS was selected. The ratio of ethanol to ammonium sulfate used in the composition of ATPS was based on the total phenolic content variable. The ATPS-3 point with the highest phenolic content was identified as the optimal point. The ethanol ratio was 28%, while the ammonium sulfate ratio was 18%. The values for the volume ratio (R) and partition coefficient (K) under optimum conditions were determined as 1.56 and 10.00, respectively. Furthermore, the optimum ATPS point was compared with the traditional extraction regarding total phenolic substances, total flavonoids, total hydrolyzed tannins, and antioxidant activity values. ATPS extracts demonstrated greater biological activity compared to traditional extraction methods. In conclusion, this innovative extraction method can serve as a viable alternative to traditional extraction techniques.

References

  • Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413-419. https://doi.org/10.1007/s00604-007-0777-0
  • Arriola, N. D. A., Chater, P. I., Wilcox, M., Lucini, L., Rocchetti, G., Dalmina, M., Pearson, J. P., & de Mello Castanho Amboni, R. D. (2019). Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation – Effects of alginate blends and gelling solutions on the polyphenolic profile. Food Chemistry, 275, 123-134. https://doi.org/10.1016/j.foodchem.2018.09.086
  • Azhdari, P., Seif Zadeh, N., Sahari, M. A., & Ahmadi Gavlighi, H. (2023). Application of enzymatic treatments in concentration of pistachio hull extract by ultrafiltration. Food Chemistry Advances, 3, 100471. https://doi.org/10.1016/j.focha.2023.100471
  • Barreca, D., Laganà, G., Leuzzi, U., Smeriglio, A., Trombetta, D., & Bellocco, E. (2016). Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chemistry, 196, 493-502. https://doi.org/10.1016/j.foodchem.2015.09.077
  • Barut, D., Tekin, H., Kılıç, İ. H., Taş, S., & Kurt, B. S. (2021). Antepfıstığı (Pistacia vera l.) yumuşak dış kabuğunun kimyasal bileşimi ve antioksidan potansiyelinin belirlenmesi. Zeugma Biological Science, 2(1), 20-26
  • Benli, H., & Bahtiyari, M. İ. (2024). An approach for the valorization of bio-waste pistachio shells (Pistacia vera L.): Dyeing of cellulose-based fabrics. Journal of Cleaner Production, 445, 141213. https://doi.org/10.1016/j.jclepro.2024.141213
  • Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009
  • Çelik, Y. H., Yalcin, R., Topkaya, T., Başaran, E., & Kilickap, E. (2021). Characterization of Hazelnut, Pistachio, and Apricot Kernel Shell Particles and Analysis of Their Composite Properties. Journal of Natural Fibers, 18(7), 1054-1068. https://doi.org/10.1080/15440478.2020.1739593
  • del Azade, S., Hanachi, P., & Saboora, O. (2016). Investigation of soluble and insoluble tannins and anthocyanins assay in two Cultivar pistachio (Pistacia vera L.). Journal of Food Science and Technology, 14(63), 179-186.
  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
  • Duangmal, K., Saicheua, B., & Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT - Food Science and Technology, 41(8), 1437-1445. https://doi.org/10.1016/j.lwt.2007.08.014
  • El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279-287. https://doi.org/10.1016/j.aoas.2015.10.015
  • Elakremi, M., Sillero, L., Ayed, L., Labidi, J., & Moussaoui, Y. (2020). Chemical composition of leaves and hull from Pistacia vera L. an evaluation of phenolic content and antioxidant properties of their extracts, Research square. https://doi.org/10.21203/rs.3.rs-128147/v1
  • Elakremi, M., Sillero, L., Ayed, L., ben Mosbah, M., Labidi, J., ben Salem, R., & Moussaoui, Y. (2022). Pistacia vera L. leaves as a renewable source of bioactive compounds via microwave assisted extraction. Sustainable Chemistry and Pharmacy, 29, 100815. https://doi.org/10.1016/j.scp.2022.100815
  • Erşan, S., Güçlü Üstündağ, Ö., Carle, R., & Schweiggert, R. M. (2018). Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chemistry, 253, 46-54. https://doi.org/10.1016/j.foodchem.2018.01.116
  • Feng, Y.-C., Li, W.-L., He, F.-M., Kong, T.-T., Huang, X.-W., Gao, Z.-H., Lu, N.-H., & Li, H.-L. (2015). Aqueous Two-Phase System as an Effective Tool for Purification of Phenolic Compounds from Fig Fruits (Ficus carica L.). Separation Science and Technology, 50(12), 1785-1793. https://doi.org/10.1080/01496395.2015.1014054
  • Fu, X.-Q., Ma, N., Sun, W.-P., & Dang, Y.-Y. (2018). Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower. Industrial Crops and Products, 123, 296-302. https://doi.org/10.1016/j.indcrop.2018.06.087
  • Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. A. B., Hussain, H. I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 18(1), 18. https://doi.org/10.1186/s12575-016-0048-8
  • Kilic, I. H., Sarikurkcu, C., Karagoz, I. D., Uren, M. C., Kocak, M. S., Cilkiz, M., & Tepe, B. (2016). A significant by-product of the industrial processing of pistachios: shell skin – RP-HPLC analysis, and antioxidant and enzyme inhibitory activities of the methanol extracts of Pistacia vera L. shell skins cultivated in Gaziantep, Turkey. RSC Advances, 6(2), 1203-1209. https://doi.org/10.1039/C5RA24530C
  • Kumar, S., Brar, R. S., Babu, J. N., Dahiya, A., Saha, S., & Kumar, A. (2021). Synergistic effect of pistachio shell powder and nano-zerovalent copper for chromium remediation from aqueous solution. Environmental Science and Pollution Research, 28(44), 63422-63436. https://doi.org/10.1007/s11356-021-15285-4
  • Le, P. H., Ho, L. T. T., Le, D. H. T., & Nguyen, V. (2023). Purification of coffee polyphenols extracted from coffee pulps (Coffee arabica L.) using aqueous two-phase system. Molecules, 28(15), 5922. https://doi.org/10.3390/molecules28155922
  • Li, Z., Jiang, B., Zhang, D., & Xiu, Z. (2009). Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths. Separation and Purification Technology, 66(3), 472-478. https://doi.org/10.1016/j.seppur.2009.02.009
  • Liu, X., Mu, T., Sun, H., Zhang, M., & Chen, J. (2013). Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chemistry, 141(3), 3034-3041. https://doi.org/10.1016/j.foodchem.2013.05.119
  • Mertdinç, Z., Aydar, E. F., Kadı, İ. H., Demircan, E., Çetinkaya, S. K., & Özçelik, B. (2023). A new plant-based milk alternative of Pistacia vera geographically indicated in Türkiye: Antioxidant activity, in vitro bio-accessibility, and sensory characteristics. Food Bioscience, 53, 102731. https://doi.org/10.1016/j.fbio.2023.102731
  • Maccarronello, A. E., Cardullo, N., Silva, A. M., Di Francesco, A., Costa, P. C., Rodrigues, F., & Muccilli, V. (2024). From waste to bioactive compounds: a response surface methodology approach to extract antioxidants from Pistacia vera shells for postprandial hyperglycaemia management. Food Chemistry, 443, 138504. https://doi.org/10.1016/j.foodchem.2024.138504
  • Özbek, H. N., Halahlih, F., Göğüş, F., Koçak Yanık, D., & Azaizeh, H. (2020). Pistachio (Pistacia vera L.) Hull as a Potential Source of Phenolic Compounds: Evaluation of Ethanol–Water Binary Solvent Extraction on Antioxidant Activity and Phenolic Content of Pistachio Hull Extracts. Waste and Biomass Valorization, 11(5), 2101-2110. https://doi.org/10.1007/s12649-018-0512-6
  • Phong, W. N., Show, P. L., Chow, Y. H., & Ling, T. C. (2018). Recovery of biotechnological products using aqueous two phase systems. Journal of Bioscience and Bioengineering, 126(3), 273-281. https://doi.org/10.1016/j.jbiosc.2018.03.005
  • Piness, J. (2010). Physical and Chemical Structural Analysis of Pistachio Shells. Journal of Undergraduate Materials Research, 4(0). https://doi.org/10.21061/jumr.v4i0.1564
  • Seker, G., & Akbas, M. Y. (2024). Evaluation of bioactivities of Pistacia vera L. hull extracts as a potential antimicrobial and antioxidant natural source. Food Science and Technology International, 30(8), 722-730. https://doi.org/10.1177/10820132231193478
  • Shen, S., Chang, Z., & Liu, H. (2006). Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater. Separation and Purification Technology, 49(3), 217-222. https://doi.org/10.1016/j.seppur.2005.09.017
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2017). Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, 174(11), 1244-1262. https://doi.org/10.1111/bph.13630
  • Sonmezdag, A. S., Kelebek, H., & Selli, S. (2017). Characterization and comparative evaluation of volatile, phenolic and antioxidant properties of pistachio (Pistacia vera L.) hull. Journal of Essential Oil Research, 29(3), 262-270. https://doi.org/10.1080/10412905.2016.1216899
  • Tatar, F., Tunç, M. T., Dervisoglu, M., Cekmecelioglu, D., & Kahyaoglu, T. (2014). Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation. Food Research International, 57, 168-175. https://doi.org/10.1016/j.foodres.2014.01.022
  • Wang, Y., Wang, S., & Liu, L. (2022). Recovery of natural active molecules using aqueous two-phase systems comprising of ionic liquids/deep eutectic solvents. Green Chemical Engineering, 3(1), 5-14. https://doi.org/10.1016/j.gce.2021.07.007
  • Welna, M., Klimpel, M., & Zyrnicki, W. (2008). Investigation of major and trace elements and their distributions between lipid and non-lipid fractions in Brazil nuts by inductively coupled plasma atomic optical spectrometry. Food Chemistry, 111(4), 1012-1015. https://doi.org/10.1016/j.foodchem.2008.04.067
  • Willis, R. B. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. The Analyst, 123(3), 435-439. https://doi.org/10.1039/a706862j
  • Wissal, D., Nahida, J., Emna, C., Maroua, B., Saloua, F., Semia, O., & Wissem, M. (2013). Chemical composition of Lentisk (Pistacia lentiscus L.) seed oil. African Journal of Agricultural Research, 8(16), 1395-1400. https://doi.org/10.5897/AJAR11.1837
  • Wu, X., Liang, L., Zou, Y., Zhao, T., Zhao, J., Li, F., & Yang, L. (2011). Aqueous two-phase extraction, identification and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.). Food Chemistry, 129(2), 443-453. https://doi.org/10.1016/j.foodchem.2011.04.097
  • Xi, J., Zhou, X., Wang, Y., & Wei, S. (2023). Short-chain alcohol/salt-based aqueous two-phase system as a novel solvent for extraction of plant active ingredients: A review. Trends in Food Science & Technology, 138, 74-84. https://doi.org/10.1016/j.tifs.2023.06.001
  • Zhang, Z., Liu, F., He, C., Yu, Y., & Wang, M. (2017). Optimization of Ultrasonic‐Assisted Aqueous Two‐Phase Extraction of Phloridzin from Malus Micromalus Makino with Ethanol/Ammonia Sulfate System. Journal of Food Science, 82(12), 2944-2953. https://doi.org/10.1111/1750-3841.13958
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Zhu, J., Kou, X., Wu, C., Fan, G., Li, T., Dou, J., & Shen, D. (2022). Enhanced extraction of bioactive natural products using ultrasound-assisted aqueous two-phase system: Application to flavonoids extraction from jujube peels. Food Chemistry, 395, 133530. https://doi.org/10.1016/j.foodchem.2022.133530

Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları

Year 2025, Volume: 15 Issue: 2, 543 - 555, 01.06.2025
https://doi.org/10.21597/jist.1581092

Abstract

Bu çalışma, fıstık posası atıklarının karakterizasyonunu ve bu materyaldeki biyoaktif bileşikleri saflaştırmak amacıyla alkol/tuz bazlı sulu iki fazlı özütleme (ATPS) yönteminin etkinliğini geleneksel yöntemle kıyaslayarak araştırmaktadır. İlk aşamada, fıstık posasının fizikokimyasal özellikleri (nem içeriği, toplam kül, yağ oranı ve renk değerleri) belirlenmiştir. Fıstık atıklarının karakteristik yapısı Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile doğrulanmıştır. Ayrıca, atıkların mineral madde içeriği İndüktif Eşleşmiş Plazma-Optik Emisyon Spektrometresi (ICP-OES) ile belirlenmiştir. İkinci aşamada ise ATPS’nin bileşimi belirlenmiştir. ATPS’nin bileşiminde kullanılan etanol ve amonyum sülfat oranı toplam fenolik madde değişkeni baz alınarak tespit edilmiştir. En yüksek fenolik maddeye sahip ATPS-3 noktası en uygun nokta olarak seçilmiştir. Bu noktada kullanılan etanol oranı %28 ve amonyum sülfat oranı ise %18 olarak bulunmuştur. Optimum koşullardaki hacim oranı (R) ve bölüşüm katsayısı (K) değerleri ise 1.56 ve 10.00 olarak tespit edilmiştir. Optimum ATPS noktası ile geleneksel özütleme toplam fenolik madde, toplam flavonoid, toplam hidrolize tanen ve antioksidan aktivite değerleri açısından karşılaştırılmıştır. ATPS özütlerinin biyolojik aktivite değerleri açısından geleneksel özütlemeye göre daha üstün olduğu bulunmuştur. Çalışma sonunda, bu yenilikçi özütleme yönteminin geleneksel özütleme yöntemlerine bir alternatif olabileceği sonucuna varılabilir.

References

  • Apak, R., Güçlü, K., Özyürek, M., & Çelik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413-419. https://doi.org/10.1007/s00604-007-0777-0
  • Arriola, N. D. A., Chater, P. I., Wilcox, M., Lucini, L., Rocchetti, G., Dalmina, M., Pearson, J. P., & de Mello Castanho Amboni, R. D. (2019). Encapsulation of stevia rebaudiana Bertoni aqueous crude extracts by ionic gelation – Effects of alginate blends and gelling solutions on the polyphenolic profile. Food Chemistry, 275, 123-134. https://doi.org/10.1016/j.foodchem.2018.09.086
  • Azhdari, P., Seif Zadeh, N., Sahari, M. A., & Ahmadi Gavlighi, H. (2023). Application of enzymatic treatments in concentration of pistachio hull extract by ultrafiltration. Food Chemistry Advances, 3, 100471. https://doi.org/10.1016/j.focha.2023.100471
  • Barreca, D., Laganà, G., Leuzzi, U., Smeriglio, A., Trombetta, D., & Bellocco, E. (2016). Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chemistry, 196, 493-502. https://doi.org/10.1016/j.foodchem.2015.09.077
  • Barut, D., Tekin, H., Kılıç, İ. H., Taş, S., & Kurt, B. S. (2021). Antepfıstığı (Pistacia vera l.) yumuşak dış kabuğunun kimyasal bileşimi ve antioksidan potansiyelinin belirlenmesi. Zeugma Biological Science, 2(1), 20-26
  • Benli, H., & Bahtiyari, M. İ. (2024). An approach for the valorization of bio-waste pistachio shells (Pistacia vera L.): Dyeing of cellulose-based fabrics. Journal of Cleaner Production, 445, 141213. https://doi.org/10.1016/j.jclepro.2024.141213
  • Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Çam, M., Hışıl, Y., & Durmaz, G. (2009). Classification of eight pomegranate juices based on antioxidant capacity measured by four methods. Food Chemistry, 112(3), 721-726. https://doi.org/10.1016/j.foodchem.2008.06.009
  • Çelik, Y. H., Yalcin, R., Topkaya, T., Başaran, E., & Kilickap, E. (2021). Characterization of Hazelnut, Pistachio, and Apricot Kernel Shell Particles and Analysis of Their Composite Properties. Journal of Natural Fibers, 18(7), 1054-1068. https://doi.org/10.1080/15440478.2020.1739593
  • del Azade, S., Hanachi, P., & Saboora, O. (2016). Investigation of soluble and insoluble tannins and anthocyanins assay in two Cultivar pistachio (Pistacia vera L.). Journal of Food Science and Technology, 14(63), 179-186.
  • Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
  • Duangmal, K., Saicheua, B., & Sueeprasan, S. (2008). Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT - Food Science and Technology, 41(8), 1437-1445. https://doi.org/10.1016/j.lwt.2007.08.014
  • El Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences, 60(2), 279-287. https://doi.org/10.1016/j.aoas.2015.10.015
  • Elakremi, M., Sillero, L., Ayed, L., Labidi, J., & Moussaoui, Y. (2020). Chemical composition of leaves and hull from Pistacia vera L. an evaluation of phenolic content and antioxidant properties of their extracts, Research square. https://doi.org/10.21203/rs.3.rs-128147/v1
  • Elakremi, M., Sillero, L., Ayed, L., ben Mosbah, M., Labidi, J., ben Salem, R., & Moussaoui, Y. (2022). Pistacia vera L. leaves as a renewable source of bioactive compounds via microwave assisted extraction. Sustainable Chemistry and Pharmacy, 29, 100815. https://doi.org/10.1016/j.scp.2022.100815
  • Erşan, S., Güçlü Üstündağ, Ö., Carle, R., & Schweiggert, R. M. (2018). Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chemistry, 253, 46-54. https://doi.org/10.1016/j.foodchem.2018.01.116
  • Feng, Y.-C., Li, W.-L., He, F.-M., Kong, T.-T., Huang, X.-W., Gao, Z.-H., Lu, N.-H., & Li, H.-L. (2015). Aqueous Two-Phase System as an Effective Tool for Purification of Phenolic Compounds from Fig Fruits (Ficus carica L.). Separation Science and Technology, 50(12), 1785-1793. https://doi.org/10.1080/01496395.2015.1014054
  • Fu, X.-Q., Ma, N., Sun, W.-P., & Dang, Y.-Y. (2018). Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower. Industrial Crops and Products, 123, 296-302. https://doi.org/10.1016/j.indcrop.2018.06.087
  • Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. A. B., Hussain, H. I., Ahmed, S., & Yuan, Z. (2016). Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 18(1), 18. https://doi.org/10.1186/s12575-016-0048-8
  • Kilic, I. H., Sarikurkcu, C., Karagoz, I. D., Uren, M. C., Kocak, M. S., Cilkiz, M., & Tepe, B. (2016). A significant by-product of the industrial processing of pistachios: shell skin – RP-HPLC analysis, and antioxidant and enzyme inhibitory activities of the methanol extracts of Pistacia vera L. shell skins cultivated in Gaziantep, Turkey. RSC Advances, 6(2), 1203-1209. https://doi.org/10.1039/C5RA24530C
  • Kumar, S., Brar, R. S., Babu, J. N., Dahiya, A., Saha, S., & Kumar, A. (2021). Synergistic effect of pistachio shell powder and nano-zerovalent copper for chromium remediation from aqueous solution. Environmental Science and Pollution Research, 28(44), 63422-63436. https://doi.org/10.1007/s11356-021-15285-4
  • Le, P. H., Ho, L. T. T., Le, D. H. T., & Nguyen, V. (2023). Purification of coffee polyphenols extracted from coffee pulps (Coffee arabica L.) using aqueous two-phase system. Molecules, 28(15), 5922. https://doi.org/10.3390/molecules28155922
  • Li, Z., Jiang, B., Zhang, D., & Xiu, Z. (2009). Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths. Separation and Purification Technology, 66(3), 472-478. https://doi.org/10.1016/j.seppur.2009.02.009
  • Liu, X., Mu, T., Sun, H., Zhang, M., & Chen, J. (2013). Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chemistry, 141(3), 3034-3041. https://doi.org/10.1016/j.foodchem.2013.05.119
  • Mertdinç, Z., Aydar, E. F., Kadı, İ. H., Demircan, E., Çetinkaya, S. K., & Özçelik, B. (2023). A new plant-based milk alternative of Pistacia vera geographically indicated in Türkiye: Antioxidant activity, in vitro bio-accessibility, and sensory characteristics. Food Bioscience, 53, 102731. https://doi.org/10.1016/j.fbio.2023.102731
  • Maccarronello, A. E., Cardullo, N., Silva, A. M., Di Francesco, A., Costa, P. C., Rodrigues, F., & Muccilli, V. (2024). From waste to bioactive compounds: a response surface methodology approach to extract antioxidants from Pistacia vera shells for postprandial hyperglycaemia management. Food Chemistry, 443, 138504. https://doi.org/10.1016/j.foodchem.2024.138504
  • Özbek, H. N., Halahlih, F., Göğüş, F., Koçak Yanık, D., & Azaizeh, H. (2020). Pistachio (Pistacia vera L.) Hull as a Potential Source of Phenolic Compounds: Evaluation of Ethanol–Water Binary Solvent Extraction on Antioxidant Activity and Phenolic Content of Pistachio Hull Extracts. Waste and Biomass Valorization, 11(5), 2101-2110. https://doi.org/10.1007/s12649-018-0512-6
  • Phong, W. N., Show, P. L., Chow, Y. H., & Ling, T. C. (2018). Recovery of biotechnological products using aqueous two phase systems. Journal of Bioscience and Bioengineering, 126(3), 273-281. https://doi.org/10.1016/j.jbiosc.2018.03.005
  • Piness, J. (2010). Physical and Chemical Structural Analysis of Pistachio Shells. Journal of Undergraduate Materials Research, 4(0). https://doi.org/10.21061/jumr.v4i0.1564
  • Seker, G., & Akbas, M. Y. (2024). Evaluation of bioactivities of Pistacia vera L. hull extracts as a potential antimicrobial and antioxidant natural source. Food Science and Technology International, 30(8), 722-730. https://doi.org/10.1177/10820132231193478
  • Shen, S., Chang, Z., & Liu, H. (2006). Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater. Separation and Purification Technology, 49(3), 217-222. https://doi.org/10.1016/j.seppur.2005.09.017
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144
  • Smeriglio, A., Barreca, D., Bellocco, E., & Trombetta, D. (2017). Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology, 174(11), 1244-1262. https://doi.org/10.1111/bph.13630
  • Sonmezdag, A. S., Kelebek, H., & Selli, S. (2017). Characterization and comparative evaluation of volatile, phenolic and antioxidant properties of pistachio (Pistacia vera L.) hull. Journal of Essential Oil Research, 29(3), 262-270. https://doi.org/10.1080/10412905.2016.1216899
  • Tatar, F., Tunç, M. T., Dervisoglu, M., Cekmecelioglu, D., & Kahyaoglu, T. (2014). Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation. Food Research International, 57, 168-175. https://doi.org/10.1016/j.foodres.2014.01.022
  • Wang, Y., Wang, S., & Liu, L. (2022). Recovery of natural active molecules using aqueous two-phase systems comprising of ionic liquids/deep eutectic solvents. Green Chemical Engineering, 3(1), 5-14. https://doi.org/10.1016/j.gce.2021.07.007
  • Welna, M., Klimpel, M., & Zyrnicki, W. (2008). Investigation of major and trace elements and their distributions between lipid and non-lipid fractions in Brazil nuts by inductively coupled plasma atomic optical spectrometry. Food Chemistry, 111(4), 1012-1015. https://doi.org/10.1016/j.foodchem.2008.04.067
  • Willis, R. B. (1998). Improved method for measuring hydrolyzable tannins using potassium iodate. The Analyst, 123(3), 435-439. https://doi.org/10.1039/a706862j
  • Wissal, D., Nahida, J., Emna, C., Maroua, B., Saloua, F., Semia, O., & Wissem, M. (2013). Chemical composition of Lentisk (Pistacia lentiscus L.) seed oil. African Journal of Agricultural Research, 8(16), 1395-1400. https://doi.org/10.5897/AJAR11.1837
  • Wu, X., Liang, L., Zou, Y., Zhao, T., Zhao, J., Li, F., & Yang, L. (2011). Aqueous two-phase extraction, identification and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.). Food Chemistry, 129(2), 443-453. https://doi.org/10.1016/j.foodchem.2011.04.097
  • Xi, J., Zhou, X., Wang, Y., & Wei, S. (2023). Short-chain alcohol/salt-based aqueous two-phase system as a novel solvent for extraction of plant active ingredients: A review. Trends in Food Science & Technology, 138, 74-84. https://doi.org/10.1016/j.tifs.2023.06.001
  • Zhang, Z., Liu, F., He, C., Yu, Y., & Wang, M. (2017). Optimization of Ultrasonic‐Assisted Aqueous Two‐Phase Extraction of Phloridzin from Malus Micromalus Makino with Ethanol/Ammonia Sulfate System. Journal of Food Science, 82(12), 2944-2953. https://doi.org/10.1111/1750-3841.13958
  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Zhu, J., Kou, X., Wu, C., Fan, G., Li, T., Dou, J., & Shen, D. (2022). Enhanced extraction of bioactive natural products using ultrasound-assisted aqueous two-phase system: Application to flavonoids extraction from jujube peels. Food Chemistry, 395, 133530. https://doi.org/10.1016/j.foodchem.2022.133530
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Gıda Mühendisliği / Food Engineering
Authors

Mehmet Şükrü Karakuş 0000-0002-1805-8206

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date November 7, 2024
Acceptance Date January 22, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Karakuş, M. Ş. (2025). Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları. Journal of the Institute of Science and Technology, 15(2), 543-555. https://doi.org/10.21597/jist.1581092
AMA Karakuş MŞ. Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları. J. Inst. Sci. and Tech. June 2025;15(2):543-555. doi:10.21597/jist.1581092
Chicago Karakuş, Mehmet Şükrü. “Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia Vera L.) Atıkları”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 543-55. https://doi.org/10.21597/jist.1581092.
EndNote Karakuş MŞ (June 1, 2025) Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları. Journal of the Institute of Science and Technology 15 2 543–555.
IEEE M. Ş. Karakuş, “Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 543–555, 2025, doi: 10.21597/jist.1581092.
ISNAD Karakuş, Mehmet Şükrü. “Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia Vera L.) Atıkları”. Journal of the Institute of Science and Technology 15/2 (June 2025), 543-555. https://doi.org/10.21597/jist.1581092.
JAMA Karakuş MŞ. Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları. J. Inst. Sci. and Tech. 2025;15:543–555.
MLA Karakuş, Mehmet Şükrü. “Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia Vera L.) Atıkları”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 543-55, doi:10.21597/jist.1581092.
Vancouver Karakuş MŞ. Biyoaktif Maddelerin Ekstraksiyonunda Sulu İki Fazlı (Etanol-Tuz Bazlı) Sistemlerin Yetenekleri: Model Bir Yapı Olarak Fıstık (Pistacia vera L.) Atıkları. J. Inst. Sci. and Tech. 2025;15(2):543-55.